In this article, we study the multiplicity and concentration behavior of positive solutions for the p-Laplacian equation of SchrSdinger-Kirchhoff type -εpM(εp-N∫RN|△u|p)△pu+v(x|u|p-2u=f(u)in RN, where ...In this article, we study the multiplicity and concentration behavior of positive solutions for the p-Laplacian equation of SchrSdinger-Kirchhoff type -εpM(εp-N∫RN|△u|p)△pu+v(x|u|p-2u=f(u)in RN, where △p is the p-Laplacian operator, 1 〈 p 〈 N, M : R+ → R+ and V : RN →R+ are continuous functions, ε is a positive parameter, and f is a continuous function with subcritical growth. We assume that V satisfies the local condition introduced by M. del Pino and P. Felmer. By the variational methods, penalization techniques, and Lyusternik- Schnirelmann theory, we prove the existence, multiplicity, and concentration of solutions for the above equation.展开更多
基金supported by Natural Science Foundation of China(11371159 and 11771166)Hubei Key Laboratory of Mathematical Sciences and Program for Changjiang Scholars and Innovative Research Team in University#IRT_17R46
文摘In this article, we study the multiplicity and concentration behavior of positive solutions for the p-Laplacian equation of SchrSdinger-Kirchhoff type -εpM(εp-N∫RN|△u|p)△pu+v(x|u|p-2u=f(u)in RN, where △p is the p-Laplacian operator, 1 〈 p 〈 N, M : R+ → R+ and V : RN →R+ are continuous functions, ε is a positive parameter, and f is a continuous function with subcritical growth. We assume that V satisfies the local condition introduced by M. del Pino and P. Felmer. By the variational methods, penalization techniques, and Lyusternik- Schnirelmann theory, we prove the existence, multiplicity, and concentration of solutions for the above equation.