The exact minimax penalty function method is used to solve a noncon- vex differentiable optimization problem with both inequality and equality constraints. The conditions for exactness of the penalization for the exac...The exact minimax penalty function method is used to solve a noncon- vex differentiable optimization problem with both inequality and equality constraints. The conditions for exactness of the penalization for the exact minimax penalty function method are established by assuming that the functions constituting the considered con- strained optimization problem are invex with respect to the same function η (with the exception of those equality constraints for which the associated Lagrange multipliers are negative these functions should be assumed to be incave with respect to η). Thus, a threshold of the penalty parameter is given such that, for all penalty parameters exceeding this threshold, equivalence holds between the set of optimal solutions in the considered constrained optimization problem and the set of minimizer in its associated penalized problem with an exact minimax penalty function. It is shown that coercivity is not suf- ficient to prove the results.展开更多
For analyzing correlated binary data with high-dimensional covariates,we,in this paper,propose a two-stage shrinkage approach.First,we construct a weighted least-squares(WLS) type function using a special weighting sc...For analyzing correlated binary data with high-dimensional covariates,we,in this paper,propose a two-stage shrinkage approach.First,we construct a weighted least-squares(WLS) type function using a special weighting scheme on the non-conservative vector field of the generalized estimating equations(GEE) model.Second,we define a penalized WLS in the spirit of the adaptive LASSO for simultaneous variable selection and parameter estimation.The proposed procedure enjoys the oracle properties in high-dimensional framework where the number of parameters grows to infinity with the number of clusters.Moreover,we prove the consistency of the sandwich formula of the covariance matrix even when the working correlation matrix is misspecified.For the selection of tuning parameter,we develop a consistent penalized quadratic form(PQF) function criterion.The performance of the proposed method is assessed through a comparison with the existing methods and through an application to a crossover trial in a pain relief study.展开更多
文摘The exact minimax penalty function method is used to solve a noncon- vex differentiable optimization problem with both inequality and equality constraints. The conditions for exactness of the penalization for the exact minimax penalty function method are established by assuming that the functions constituting the considered con- strained optimization problem are invex with respect to the same function η (with the exception of those equality constraints for which the associated Lagrange multipliers are negative these functions should be assumed to be incave with respect to η). Thus, a threshold of the penalty parameter is given such that, for all penalty parameters exceeding this threshold, equivalence holds between the set of optimal solutions in the considered constrained optimization problem and the set of minimizer in its associated penalized problem with an exact minimax penalty function. It is shown that coercivity is not suf- ficient to prove the results.
基金supported by National Natural Science Foundation of China(Grant No.11201306)the Innovation Program of Shanghai Municipal Education Commission(Grant No.13YZ065)+2 种基金the Fundamental Research Project of Shanghai Normal University(Grant No.SK201207)the scholarship under the State Scholarship Fund by the China Scholarship Council in 2011the Research Grant Council of Hong Kong, Hong Kong,China(Grant No.#HKBU2028/10P)
文摘For analyzing correlated binary data with high-dimensional covariates,we,in this paper,propose a two-stage shrinkage approach.First,we construct a weighted least-squares(WLS) type function using a special weighting scheme on the non-conservative vector field of the generalized estimating equations(GEE) model.Second,we define a penalized WLS in the spirit of the adaptive LASSO for simultaneous variable selection and parameter estimation.The proposed procedure enjoys the oracle properties in high-dimensional framework where the number of parameters grows to infinity with the number of clusters.Moreover,we prove the consistency of the sandwich formula of the covariance matrix even when the working correlation matrix is misspecified.For the selection of tuning parameter,we develop a consistent penalized quadratic form(PQF) function criterion.The performance of the proposed method is assessed through a comparison with the existing methods and through an application to a crossover trial in a pain relief study.