The collection efficiency of monitor parallel plate ionization chambers is the main uncertainty in the beam control of pencil beam scanning systems.Existing calculation methods for collection efficiency in photon or p...The collection efficiency of monitor parallel plate ionization chambers is the main uncertainty in the beam control of pencil beam scanning systems.Existing calculation methods for collection efficiency in photon or passive scattering proton systems have not considered the characteristics of non-uniform charge density in pencil beam scanning systems.In this study,Boag’s theory was applied to a proton pencil beam scanning system.The transverse distribution of charge density in the ionization chamber was considered to be a Gaussian function and an analytical solution was derived to calculate collection efficiency in the beam spot area.This calculation method is called the integral method and it was used to investigate the effects of beam parameters on collection efficiency.It was determined that collection efficiency is positively correlated with applied voltage,beam size,and beam energy,but negatively correlated with beam current intensity.Additionally,it was confirmed that collection efficiency is improved when the air filling the monitor parallel plate ionization chamber is replaced with nitrogen.展开更多
The spatial resolution of a commercial two-dimensional(2D)ionization chamber(IC)array is limited by the size of the individual detector and the center-to-center distance between sensors.For dose distributions with are...The spatial resolution of a commercial two-dimensional(2D)ionization chamber(IC)array is limited by the size of the individual detector and the center-to-center distance between sensors.For dose distributions with areas of steep dose gradients,inter-detector dose values are derived by the interpolation of nearby detector readings in the conventional mathematical interpolation of 2D IC array measurements.This may introduce significant errors,particularly in proton spot scanning radiotherapy.In this study,by combining logfile-based reconstructed dose values and detector measurements with the Laplacian pyramid image blending method,a novel method is proposed to obtain a reformatted dose distribution that provides an improved estimation of the delivered dose distribution with high spatial resolution.Meanwhile,the similarity between the measured original data and the downsampled logfilebased reconstructed dose is regarded as the confidence of the reformatted dose distribution.Furthermore,we quantify the performance benefits of this new approach by directly comparing the reformatted dose distributions with 2D IC array detector mathematically interpolated measurements and original low-resolution measurements.The result shows that this new method is better than the mathematical interpolation and achieves gamma pass rates similar to those of the original low-resolution measurements.The reformatted dose distributions generally yield a confidence exceeding 95%.展开更多
Purpose: To quantitatively evaluate four different Proton SFUD PBS initial planning strategies for lung mobile tumor. Methods and Materials: A virtual lung patient’s four-dimensional computed tomography (4DCT) was ge...Purpose: To quantitatively evaluate four different Proton SFUD PBS initial planning strategies for lung mobile tumor. Methods and Materials: A virtual lung patient’s four-dimensional computed tomography (4DCT) was generated in this study. To avoid the uncertainties from target delineation and imaging artifacts, a sphere with diameter of 3 cm representing a rigid mobile target (GTV) was inserted into the right side of the lung. The target motion is set in superior-inferior (SI) direction from ?5 mm to 5 mm. Four SFUD planning strategies were used based on: 1) Maximum-In-tensity-Projection Image (MIP-CT);2) CT_average with ITV overridden to muscle density (CTavg_muscle);3) CT_average with ITV overridden to tumor density (CTavg_tumor);4) CT_average without any override density (CTavg_only). Dose distributions were recalculated on each individual phase and accumulated together to assess the “actual” treatment. To estimate the impact of proton range uncertainties, +/?3.5% CT calibration curve was applied to the 4DCT phase images. Results: Comparing initial plan to the dose accumulation: MIP-CT based GTV D98 degraded 2.42 Gy (60.10 Gy vs 57.68 Gy). Heart D1 increased 6.19 Gy (1.88 Gy vs 8.07 Gy);CTavg_tumor based GTV D98 degraded 0.34 Gy (60.07 Gy vs 59.73 Gy). Heart D1 increased 2.24 Gy (3.74 Gy vs 5.98 Gy);CTavg_muscle based initial GTV D98 degraded 0.31 Gy (60.4 Gy vs 60.19 Gy). Heart D1 increased 3.44 Gy (4.38 Gy vs 7.82 Gy);CTavg_only based Initial GTV D98 degraded 6.63 Gy (60.11 Gy vs 53.48 Gy). Heart D1 increased 0.30 Gy (2.69 Gy vs 2.96 Gy);in the presence of ±3.5% range uncertainties, CTavg_tumor based plan’s accumulated GTV D98 degraded to 57.99 Gy (+3.5%) 59.38 Gy (?3.5%), and CTavg_muscle based plan’s accumulated GTV D98 degraded to 59.37 Gy (+3.5%) 59.37 Gy (?3.5%). Conclusion: This study shows that CTavg_Tumor and CTavg_Muscle based planning strategies provide the most robust GTV coverage. However, clinicians need to be aware that the actual dose to OARs at distal end of target may increase. The study also indicates that the current SFUD PBS planning strategy might not be sufficient to compensate the CT calibration uncertainty.展开更多
Background: To evaluate the robustness of head and neck treatment using proton pencil beam scanning (PBS) technique with respect to range uncertainty (RU) and setup errors (SE), and to establish a robust PBS planning ...Background: To evaluate the robustness of head and neck treatment using proton pencil beam scanning (PBS) technique with respect to range uncertainty (RU) and setup errors (SE), and to establish a robust PBS planning strategy for future treatment. Methods and Materials: Ten consecutive patients were planned with a novel proton field geometry (combination of two posterior oblique fields and one anterior field with gradient dose match) using single-field uniform dose (SFUD) planning technique and the proton plans were dosimetrically compared to two coplanar arc VMAT plans. Robustness of the plans, with respect to range uncertainties (RU = ± 3% for proton) and setup errors (SE = 2.25 mm for proton and VMAT), in terms of deviations to target coverage (CTV D98%) and OAR doses (max/mean), were evaluated and compared for each patient under worst case scenarios. Results: Dosimetrically, PBS plans provided better sparing to larynx (p = 0.005), oral cavity (p < 0.001) and contralateral parotid (p = 0.004) when compared to VMAT. CTV D98% variations were higher from SE than from RU for proton plans (-1.1% ± 1.3 % vs -0.4% ± 0.7% for nodal CTV and -1.4% ± 1.2 vs -0.4% ± 0.5% % for boost CTV). Overall, the magnitudes of variation of CTV D98% to combined SE and RU were found to be similar to the impact of the SE on the VMAT plans (-1.6% ± 1.9% vs -1.7% ± 1.4% for nodal CTV and -1.9% ± 1.6% vs -1.3% ± 1.5% for boost CTV). Compared to VMAT, a larger range of relative dose deviations were found for OARs in proton plans, but safe doses were maintained for cord (41.8 ± 3.6 Gy for PBS and 41.7 ± 3.9 Gy for VMAT) and brainstem (35.2 ± 8.4 Gy for PBS and 36.2 ± 5.1 Gy for VMAT) in worst case scenarios. Conclusions: Compared to VMAT, proton plans containing three SFUD fields with superior-inferior gradient dose matching had improved sparing to larynx, contralateral parotid and oral cavity, while providing similar robustness of target coverage. Evaluation of OAR dose robustness showed higher sensitivities to uncertainties for proton plans, but safe dose levels were maintained for cord and brainstem.展开更多
In this paper, efficient, high gain and pencil beam grid antenna array is proposed for hyperthermia breast cancer therapy system. The proposed antenna bandwidth extends from 4.8 GHz to 4.9 GHz at resonant frequency of...In this paper, efficient, high gain and pencil beam grid antenna array is proposed for hyperthermia breast cancer therapy system. The proposed antenna bandwidth extends from 4.8 GHz to 4.9 GHz at resonant frequency of 4.86 GHz. This frequency band has been reported for the breast cancer hyperthermia therapy. The grid long and short sides are responsible for the undesired cross-polarized radiation and desired copolarized radiation, respectively. The unsuitability of the conventional grid antenna array is ensured by investigating its radiation properties. The proposed grid antenna array short side width is varied and its long side width is kept wide as possible to enhance the radiation properties and to reduce the losses. Also, a reflector has been used for gain enhancement purpose. The proposed grid antenna array achieves side lobe level and 3 dB beam width of —27.9 dB and 25.9° for the E-plane and —27.9 dB and 26.3° for the H-plane, respectively. The breast phantom is irradiated by both proposed and conventional grid antenna arrays for 10 minutes. The proposed grid antenna array achieves 8°C temperature increase within the breast phantom area compared to 2°C temperature increase for conventional one. The proposed grid antenna array is highly efficient, high gain and light weight, and it has a very suitable radiation property for hyperthermia breast cancer therapy.展开更多
This study mainly focused on the key technologies,the photon dose calculation based on the Monte Carlo Finite-Size Pencil Beam(MCFSPB)model in the Accurate Radiotherapy System(ARTS).In the MCFSPB model,the acquisition...This study mainly focused on the key technologies,the photon dose calculation based on the Monte Carlo Finite-Size Pencil Beam(MCFSPB)model in the Accurate Radiotherapy System(ARTS).In the MCFSPB model,the acquisition of pencil beam kernel is one of the most important technologies.In this study,by analyzing the demerits of the clinical pencil beam dose calculation methods,a new pencil beam kernel model was developed based on the Monte Carlo(MC)simulation and the technology of medical accelerator energy spectrum reconstruction.which greatly improved the accuracy of calculated result.According to the axial symmetry principle,only part of simulation results was used for the data of pencil beam kernel,which greatly reduced the data quantity of the pencil beam and reduced calculated time.Based on the above studies,the MCFSPB method was designed and implemented by the Visual C++development tool.With several tests including the comparisons among the American Association of Physicists in Medicine(AAPM)No.55 Report sample and the ion chamber measurement of lung-simulating inhomogeneous phantom in clinical treatment plan,the results showed that the maximum error of most calculated point was less than 0.5%in the homogeneous phantom and less than 3%in the heterogeneous phantom.This method met the clinical criteria,and would be expected to be used as a fast and accurate dose engine for clinic TPS.展开更多
Objective:To determine under what conditions and criteria comparisons between calculations made with the current clinical treatment planning system(Syngo)and an in-house built TPS(TIMPS)would allow skipping of in-beam...Objective:To determine under what conditions and criteria comparisons between calculations made with the current clinical treatment planning system(Syngo)and an in-house built TPS(TIMPS)would allow skipping of in-beam portal-specific measurements.Methods:Measurements were made with an array of 24 ion chambers in a water phantom for 227 proton and 313 carbon ion portals with and without a range shifter(RS).These measurements were compared with calculations performed with Syngo and TIMPS using metrics of average dose difference and Gamma index.Results:For proton portals without RS,if a Gamma comparison between TIMPS and Syngo passed using criteria of 90%of tested points being within 3%and 3 mm,then 74%of measurements would agree with both TIMPS and Syngo.For proton portals with RS,more than 80%of measurements would agree with both calculations using the same criteria.For carbon ion portals without RS,if a Gamma evaluation between TIMPS and Syngo passed with criteria of 90%of tested points being within 2%and 2 mm,85%of measurements would agree with both cal-culations.For carbon ion portals with RS,if a Gamma evaluation between TIMPS and Syngo passed with criteria of 90%of tested points being within 3%and 3 mm,60%of measurements would agree with both calculations.Conclusions:Both the pencil beam algorithm in Syngo and the FDC algorithm in TIMPS can provide accurate dose calculations in water for most clinical portals.For about 75%of portals,physicists can perform comparisons of calculations instead of phantom measurements to verify Syngo calculations thereby saving a large amount of beam time.There are some portals,however,such as for low-energy protons without RS and high-energy carbon ions,where agreement between the two calculations and measurements are not yet satisfactory to allow the elimination of all measurements.展开更多
目的:分析、比较笔形束卷积算法(PBC)和各向异性解析算法(AAA)在非小细胞肺癌(NSCLC)调强放疗计划设计中的剂量学差异。方法:随机选择7例NSCLC患者,采用Eclipse version 7.3.10计划系统提供的PBC算法和AAA算法对每例NSCLC进行IMRT的计...目的:分析、比较笔形束卷积算法(PBC)和各向异性解析算法(AAA)在非小细胞肺癌(NSCLC)调强放疗计划设计中的剂量学差异。方法:随机选择7例NSCLC患者,采用Eclipse version 7.3.10计划系统提供的PBC算法和AAA算法对每例NSCLC进行IMRT的计划设计,比较靶区及危及器官的剂量分布、DVH等指标。结果:两种算法获得治疗计划的靶区剂量均匀性和适形度均无明显差别,食管、心脏、脊髓等危及器官的受量也基本相同。结论:对于NSCLC,剂量计算应采用受呼吸时相影响更小的AAA算法。展开更多
文摘The collection efficiency of monitor parallel plate ionization chambers is the main uncertainty in the beam control of pencil beam scanning systems.Existing calculation methods for collection efficiency in photon or passive scattering proton systems have not considered the characteristics of non-uniform charge density in pencil beam scanning systems.In this study,Boag’s theory was applied to a proton pencil beam scanning system.The transverse distribution of charge density in the ionization chamber was considered to be a Gaussian function and an analytical solution was derived to calculate collection efficiency in the beam spot area.This calculation method is called the integral method and it was used to investigate the effects of beam parameters on collection efficiency.It was determined that collection efficiency is positively correlated with applied voltage,beam size,and beam energy,but negatively correlated with beam current intensity.Additionally,it was confirmed that collection efficiency is improved when the air filling the monitor parallel plate ionization chamber is replaced with nitrogen.
文摘The spatial resolution of a commercial two-dimensional(2D)ionization chamber(IC)array is limited by the size of the individual detector and the center-to-center distance between sensors.For dose distributions with areas of steep dose gradients,inter-detector dose values are derived by the interpolation of nearby detector readings in the conventional mathematical interpolation of 2D IC array measurements.This may introduce significant errors,particularly in proton spot scanning radiotherapy.In this study,by combining logfile-based reconstructed dose values and detector measurements with the Laplacian pyramid image blending method,a novel method is proposed to obtain a reformatted dose distribution that provides an improved estimation of the delivered dose distribution with high spatial resolution.Meanwhile,the similarity between the measured original data and the downsampled logfilebased reconstructed dose is regarded as the confidence of the reformatted dose distribution.Furthermore,we quantify the performance benefits of this new approach by directly comparing the reformatted dose distributions with 2D IC array detector mathematically interpolated measurements and original low-resolution measurements.The result shows that this new method is better than the mathematical interpolation and achieves gamma pass rates similar to those of the original low-resolution measurements.The reformatted dose distributions generally yield a confidence exceeding 95%.
文摘Purpose: To quantitatively evaluate four different Proton SFUD PBS initial planning strategies for lung mobile tumor. Methods and Materials: A virtual lung patient’s four-dimensional computed tomography (4DCT) was generated in this study. To avoid the uncertainties from target delineation and imaging artifacts, a sphere with diameter of 3 cm representing a rigid mobile target (GTV) was inserted into the right side of the lung. The target motion is set in superior-inferior (SI) direction from ?5 mm to 5 mm. Four SFUD planning strategies were used based on: 1) Maximum-In-tensity-Projection Image (MIP-CT);2) CT_average with ITV overridden to muscle density (CTavg_muscle);3) CT_average with ITV overridden to tumor density (CTavg_tumor);4) CT_average without any override density (CTavg_only). Dose distributions were recalculated on each individual phase and accumulated together to assess the “actual” treatment. To estimate the impact of proton range uncertainties, +/?3.5% CT calibration curve was applied to the 4DCT phase images. Results: Comparing initial plan to the dose accumulation: MIP-CT based GTV D98 degraded 2.42 Gy (60.10 Gy vs 57.68 Gy). Heart D1 increased 6.19 Gy (1.88 Gy vs 8.07 Gy);CTavg_tumor based GTV D98 degraded 0.34 Gy (60.07 Gy vs 59.73 Gy). Heart D1 increased 2.24 Gy (3.74 Gy vs 5.98 Gy);CTavg_muscle based initial GTV D98 degraded 0.31 Gy (60.4 Gy vs 60.19 Gy). Heart D1 increased 3.44 Gy (4.38 Gy vs 7.82 Gy);CTavg_only based Initial GTV D98 degraded 6.63 Gy (60.11 Gy vs 53.48 Gy). Heart D1 increased 0.30 Gy (2.69 Gy vs 2.96 Gy);in the presence of ±3.5% range uncertainties, CTavg_tumor based plan’s accumulated GTV D98 degraded to 57.99 Gy (+3.5%) 59.38 Gy (?3.5%), and CTavg_muscle based plan’s accumulated GTV D98 degraded to 59.37 Gy (+3.5%) 59.37 Gy (?3.5%). Conclusion: This study shows that CTavg_Tumor and CTavg_Muscle based planning strategies provide the most robust GTV coverage. However, clinicians need to be aware that the actual dose to OARs at distal end of target may increase. The study also indicates that the current SFUD PBS planning strategy might not be sufficient to compensate the CT calibration uncertainty.
文摘Background: To evaluate the robustness of head and neck treatment using proton pencil beam scanning (PBS) technique with respect to range uncertainty (RU) and setup errors (SE), and to establish a robust PBS planning strategy for future treatment. Methods and Materials: Ten consecutive patients were planned with a novel proton field geometry (combination of two posterior oblique fields and one anterior field with gradient dose match) using single-field uniform dose (SFUD) planning technique and the proton plans were dosimetrically compared to two coplanar arc VMAT plans. Robustness of the plans, with respect to range uncertainties (RU = ± 3% for proton) and setup errors (SE = 2.25 mm for proton and VMAT), in terms of deviations to target coverage (CTV D98%) and OAR doses (max/mean), were evaluated and compared for each patient under worst case scenarios. Results: Dosimetrically, PBS plans provided better sparing to larynx (p = 0.005), oral cavity (p < 0.001) and contralateral parotid (p = 0.004) when compared to VMAT. CTV D98% variations were higher from SE than from RU for proton plans (-1.1% ± 1.3 % vs -0.4% ± 0.7% for nodal CTV and -1.4% ± 1.2 vs -0.4% ± 0.5% % for boost CTV). Overall, the magnitudes of variation of CTV D98% to combined SE and RU were found to be similar to the impact of the SE on the VMAT plans (-1.6% ± 1.9% vs -1.7% ± 1.4% for nodal CTV and -1.9% ± 1.6% vs -1.3% ± 1.5% for boost CTV). Compared to VMAT, a larger range of relative dose deviations were found for OARs in proton plans, but safe doses were maintained for cord (41.8 ± 3.6 Gy for PBS and 41.7 ± 3.9 Gy for VMAT) and brainstem (35.2 ± 8.4 Gy for PBS and 36.2 ± 5.1 Gy for VMAT) in worst case scenarios. Conclusions: Compared to VMAT, proton plans containing three SFUD fields with superior-inferior gradient dose matching had improved sparing to larynx, contralateral parotid and oral cavity, while providing similar robustness of target coverage. Evaluation of OAR dose robustness showed higher sensitivities to uncertainties for proton plans, but safe dose levels were maintained for cord and brainstem.
文摘In this paper, efficient, high gain and pencil beam grid antenna array is proposed for hyperthermia breast cancer therapy system. The proposed antenna bandwidth extends from 4.8 GHz to 4.9 GHz at resonant frequency of 4.86 GHz. This frequency band has been reported for the breast cancer hyperthermia therapy. The grid long and short sides are responsible for the undesired cross-polarized radiation and desired copolarized radiation, respectively. The unsuitability of the conventional grid antenna array is ensured by investigating its radiation properties. The proposed grid antenna array short side width is varied and its long side width is kept wide as possible to enhance the radiation properties and to reduce the losses. Also, a reflector has been used for gain enhancement purpose. The proposed grid antenna array achieves side lobe level and 3 dB beam width of —27.9 dB and 25.9° for the E-plane and —27.9 dB and 26.3° for the H-plane, respectively. The breast phantom is irradiated by both proposed and conventional grid antenna arrays for 10 minutes. The proposed grid antenna array achieves 8°C temperature increase within the breast phantom area compared to 2°C temperature increase for conventional one. The proposed grid antenna array is highly efficient, high gain and light weight, and it has a very suitable radiation property for hyperthermia breast cancer therapy.
基金the National Natural Science Foundation of China under grant No.30900386&No.81101132the Anhui Provincial Natural Science Foundation under grant No.11040606Q55.
文摘This study mainly focused on the key technologies,the photon dose calculation based on the Monte Carlo Finite-Size Pencil Beam(MCFSPB)model in the Accurate Radiotherapy System(ARTS).In the MCFSPB model,the acquisition of pencil beam kernel is one of the most important technologies.In this study,by analyzing the demerits of the clinical pencil beam dose calculation methods,a new pencil beam kernel model was developed based on the Monte Carlo(MC)simulation and the technology of medical accelerator energy spectrum reconstruction.which greatly improved the accuracy of calculated result.According to the axial symmetry principle,only part of simulation results was used for the data of pencil beam kernel,which greatly reduced the data quantity of the pencil beam and reduced calculated time.Based on the above studies,the MCFSPB method was designed and implemented by the Visual C++development tool.With several tests including the comparisons among the American Association of Physicists in Medicine(AAPM)No.55 Report sample and the ion chamber measurement of lung-simulating inhomogeneous phantom in clinical treatment plan,the results showed that the maximum error of most calculated point was less than 0.5%in the homogeneous phantom and less than 3%in the heterogeneous phantom.This method met the clinical criteria,and would be expected to be used as a fast and accurate dose engine for clinic TPS.
文摘Objective:To determine under what conditions and criteria comparisons between calculations made with the current clinical treatment planning system(Syngo)and an in-house built TPS(TIMPS)would allow skipping of in-beam portal-specific measurements.Methods:Measurements were made with an array of 24 ion chambers in a water phantom for 227 proton and 313 carbon ion portals with and without a range shifter(RS).These measurements were compared with calculations performed with Syngo and TIMPS using metrics of average dose difference and Gamma index.Results:For proton portals without RS,if a Gamma comparison between TIMPS and Syngo passed using criteria of 90%of tested points being within 3%and 3 mm,then 74%of measurements would agree with both TIMPS and Syngo.For proton portals with RS,more than 80%of measurements would agree with both calculations using the same criteria.For carbon ion portals without RS,if a Gamma evaluation between TIMPS and Syngo passed with criteria of 90%of tested points being within 2%and 2 mm,85%of measurements would agree with both cal-culations.For carbon ion portals with RS,if a Gamma evaluation between TIMPS and Syngo passed with criteria of 90%of tested points being within 3%and 3 mm,60%of measurements would agree with both calculations.Conclusions:Both the pencil beam algorithm in Syngo and the FDC algorithm in TIMPS can provide accurate dose calculations in water for most clinical portals.For about 75%of portals,physicists can perform comparisons of calculations instead of phantom measurements to verify Syngo calculations thereby saving a large amount of beam time.There are some portals,however,such as for low-energy protons without RS and high-energy carbon ions,where agreement between the two calculations and measurements are not yet satisfactory to allow the elimination of all measurements.
文摘目的:分析、比较笔形束卷积算法(PBC)和各向异性解析算法(AAA)在非小细胞肺癌(NSCLC)调强放疗计划设计中的剂量学差异。方法:随机选择7例NSCLC患者,采用Eclipse version 7.3.10计划系统提供的PBC算法和AAA算法对每例NSCLC进行IMRT的计划设计,比较靶区及危及器官的剂量分布、DVH等指标。结果:两种算法获得治疗计划的靶区剂量均匀性和适形度均无明显差别,食管、心脏、脊髓等危及器官的受量也基本相同。结论:对于NSCLC,剂量计算应采用受呼吸时相影响更小的AAA算法。