The inverted pendulum is a classic problem in dynamics and control theory and is widely used as a benchmark for testing control algorithms. It is unstable without control. The process is non linear and unstable with o...The inverted pendulum is a classic problem in dynamics and control theory and is widely used as a benchmark for testing control algorithms. It is unstable without control. The process is non linear and unstable with one input signal and several output signals. It is hence obvious that feedback of the state of the pendulum is needed to stabilize the pendulum. The aim of the study is to stabilize the pendulum such that the position of the carriage on the track is controlled quickly and accurately. The problem involves an arm, able to move horizontally in angular motion, and a pendulum, hinged to the arm at the bottom of its length such that the pendulum can move in the same plane as the arm. The conventional PID controller can be used for virtually any process condition. This makes elimination the offset of the proportional mode possible and still provides fast response. In this paper, we have modelled the system and studied conventional controller and LQR controller. It is observed that the LQR method works better compared to conventional controller.展开更多
This paper outlines the vibrational motion of a nonlinear system with a spring of linear stiffness. Homotopy perturbation technique (HPT) is used to obtain the asymptotic solution of the governing equation of motion. ...This paper outlines the vibrational motion of a nonlinear system with a spring of linear stiffness. Homotopy perturbation technique (HPT) is used to obtain the asymptotic solution of the governing equation of motion. The numerical solution of this equation is obtained using the fourth order Runge-Kutta method (RKM). The comparison between both solutions reveals high consistency between them which confirms that, the accuracy of the obtained solution using aforementioned perturbation technique. The time history of the attained solution is represented through some plots to reveal the good effect of the different parameters of the considered system on the motion at any instant. The conditions of the stability of the attained solution are presented and discussed.展开更多
In this paper, a brand-new wavelet-homotopy Galerkin technique is developed to solve nonlinear ordinary or partial differential equations. Before this investigation,few studies have been done for handling nonlinear pr...In this paper, a brand-new wavelet-homotopy Galerkin technique is developed to solve nonlinear ordinary or partial differential equations. Before this investigation,few studies have been done for handling nonlinear problems with non-uniform boundary conditions by means of the wavelet Galerkin technique, especially in the field of fluid mechanics and heat transfer. The lid-driven cavity flow and heat transfer are illustrated as a typical example to verify the validity and correctness of this proposed technique. The cavity is subject to the upper and lower walls’ motions in the same or opposite directions.The inclined angle of the square cavity is from 0 to π/2. Four different modes including uniform, linear, exponential, and sinusoidal heating are considered on the top and bottom walls, respectively, while the left and right walls are thermally isolated and stationary.A parametric analysis of heating distribution between upper and lower walls including the amplitude ratio from 0 to 1 and the phase deviation from 0 to 2π is conducted. The governing equations are non-dimensionalized in terms of the stream function-vorticity formulation and the temperature distribution function and then solved analytically subject to various boundary conditions. Comparisons with previous publications are given,showing high efficiency and great feasibility of the proposed technique.展开更多
The(un)forced(un)damped parametric pendulum oscillator(PPO)is analyzed analytically and numerically using some simple,effective,and more accurate techniques.In the first technique,the ansatz method is employed for ana...The(un)forced(un)damped parametric pendulum oscillator(PPO)is analyzed analytically and numerically using some simple,effective,and more accurate techniques.In the first technique,the ansatz method is employed for analyzing the unforced damped PPO and for deriving some optimal and accurate analytical approximations in the form of angular Mathieu functions.In the second approach,some approximations to(un)forced damped PPO are obtained in the form of trigonometric functions using the ansatz method.In the third approach,He’s frequency-amplitude principle is applied for deriving some approximations to the(un)damped PPO.In the forth approach,He’s homotopy technique is employed for analyzing the forced(un)damped PPO numerically.In the fifth approach,the p-solution Method,which is constructed based on Krylov–Bogoliúbov Mitropolsky method,is introduced for deriving an approximation to the forced damped PPO.In the final approach,the hybrid Padé-finite difference method is carried out for analyzing the damped PPO numerically.All proposed techniques are compared to the fourth-order Runge–Kutta(RK4)numerical solution.Moreover,the global maximum residual distance error is estimated for checking the accuracy of the obtained approximations.The proposed methodologies and approximations can help many researchers in studying and investigating several nonlinear phenomena related to the oscillations that can arise in various branches of science,e.g.waves and oscillations in plasma physics.展开更多
In this paper, the basic ideas of a new analytic technique, namely the Homotopy Analysis Method (HAM), are described. Different from perturbation methods, the validity of the HAM is independent on whether or not there...In this paper, the basic ideas of a new analytic technique, namely the Homotopy Analysis Method (HAM), are described. Different from perturbation methods, the validity of the HAM is independent on whether or not there exist small parameters in considered nonlinear equations. Therefore, it provides us with a powerful analytic tool for strongly nonlinear problems. A typical nonlinear problem is used as an example to verify the validity and the great potential of the HAM.展开更多
文摘The inverted pendulum is a classic problem in dynamics and control theory and is widely used as a benchmark for testing control algorithms. It is unstable without control. The process is non linear and unstable with one input signal and several output signals. It is hence obvious that feedback of the state of the pendulum is needed to stabilize the pendulum. The aim of the study is to stabilize the pendulum such that the position of the carriage on the track is controlled quickly and accurately. The problem involves an arm, able to move horizontally in angular motion, and a pendulum, hinged to the arm at the bottom of its length such that the pendulum can move in the same plane as the arm. The conventional PID controller can be used for virtually any process condition. This makes elimination the offset of the proportional mode possible and still provides fast response. In this paper, we have modelled the system and studied conventional controller and LQR controller. It is observed that the LQR method works better compared to conventional controller.
文摘This paper outlines the vibrational motion of a nonlinear system with a spring of linear stiffness. Homotopy perturbation technique (HPT) is used to obtain the asymptotic solution of the governing equation of motion. The numerical solution of this equation is obtained using the fourth order Runge-Kutta method (RKM). The comparison between both solutions reveals high consistency between them which confirms that, the accuracy of the obtained solution using aforementioned perturbation technique. The time history of the attained solution is represented through some plots to reveal the good effect of the different parameters of the considered system on the motion at any instant. The conditions of the stability of the attained solution are presented and discussed.
基金Project supported by the National Natural Science Foundation of China(Nos.11272209,11432009,and 11872241)
文摘In this paper, a brand-new wavelet-homotopy Galerkin technique is developed to solve nonlinear ordinary or partial differential equations. Before this investigation,few studies have been done for handling nonlinear problems with non-uniform boundary conditions by means of the wavelet Galerkin technique, especially in the field of fluid mechanics and heat transfer. The lid-driven cavity flow and heat transfer are illustrated as a typical example to verify the validity and correctness of this proposed technique. The cavity is subject to the upper and lower walls’ motions in the same or opposite directions.The inclined angle of the square cavity is from 0 to π/2. Four different modes including uniform, linear, exponential, and sinusoidal heating are considered on the top and bottom walls, respectively, while the left and right walls are thermally isolated and stationary.A parametric analysis of heating distribution between upper and lower walls including the amplitude ratio from 0 to 1 and the phase deviation from 0 to 2π is conducted. The governing equations are non-dimensionalized in terms of the stream function-vorticity formulation and the temperature distribution function and then solved analytically subject to various boundary conditions. Comparisons with previous publications are given,showing high efficiency and great feasibility of the proposed technique.
基金The authors express their gratitude to Princess Nourah bint Abdulrahman University Researchers Supporting Project (Grant No. PNURSP2022R17)Taif University Researchers supporting project number (TURSP2020/275), Taif University, Taif, Saudi Arabia。
文摘The(un)forced(un)damped parametric pendulum oscillator(PPO)is analyzed analytically and numerically using some simple,effective,and more accurate techniques.In the first technique,the ansatz method is employed for analyzing the unforced damped PPO and for deriving some optimal and accurate analytical approximations in the form of angular Mathieu functions.In the second approach,some approximations to(un)forced damped PPO are obtained in the form of trigonometric functions using the ansatz method.In the third approach,He’s frequency-amplitude principle is applied for deriving some approximations to the(un)damped PPO.In the forth approach,He’s homotopy technique is employed for analyzing the forced(un)damped PPO numerically.In the fifth approach,the p-solution Method,which is constructed based on Krylov–Bogoliúbov Mitropolsky method,is introduced for deriving an approximation to the forced damped PPO.In the final approach,the hybrid Padé-finite difference method is carried out for analyzing the damped PPO numerically.All proposed techniques are compared to the fourth-order Runge–Kutta(RK4)numerical solution.Moreover,the global maximum residual distance error is estimated for checking the accuracy of the obtained approximations.The proposed methodologies and approximations can help many researchers in studying and investigating several nonlinear phenomena related to the oscillations that can arise in various branches of science,e.g.waves and oscillations in plasma physics.
文摘In this paper, the basic ideas of a new analytic technique, namely the Homotopy Analysis Method (HAM), are described. Different from perturbation methods, the validity of the HAM is independent on whether or not there exist small parameters in considered nonlinear equations. Therefore, it provides us with a powerful analytic tool for strongly nonlinear problems. A typical nonlinear problem is used as an example to verify the validity and the great potential of the HAM.