When a penetrator with enhanced lateral effect(PELE) impacts on a reinforced concrete(RC) target,the target is damaged with a large opening.An understanding of how PELE projectile parameters affect the opening dimensi...When a penetrator with enhanced lateral effect(PELE) impacts on a reinforced concrete(RC) target,the target is damaged with a large opening.An understanding of how PELE projectile parameters affect the opening dimension,is essential for effective design of the PELE projectile.In this study,under the condition that the impact velocity and target parameters(strength and thickness) were fixed values,the important influence factors of the PELE(jacket wall thickness B,jacket material strength Y1,filling material strength Y2 and angle of monolithic jacket θ) were determined by a dimensional analysis.Tests and simulations of the PELE penetrating the RC target were conducted to analyze the influence of these factors on opening diameter(D,an equivalent diameter under relative kinetic energy).Based on the test and simulation results,it is found that the influence of these factors B,Y1 and θ on the deformation mode of the jacket shows a similar trend:as values of the three factors decrease,the jacket deforms from small bending deformation to large one,and then to curling deformation.This causes the opening diameter to first increase with the decrease of these three factors,and then decreases.It is well known that the bending resistance of the jacket is related to these factors B,Y1 and θ.Therefore,a plastic limit bending moment(M0) of the jacket was quoted to characterize the influence of these factors on the bending deformation of the jacket and the opening diameter of the target.The influence factor Y2 causes D to first increase with the increase of Y2,and then decreases.A formula was developed to predict the opening diameter,whose influence parameters were considered in a dimensionless way.It has been shown that the dimensionless opening diameter D/d1 is dependent on two dimensionless parameters■ and■,where d1 and fc are the outer diameter of the projectile and the compressive strength of the target,respectively.展开更多
Based on analyzing the conservation of energy of penetrator with enhanced lateral efficiency (PELE) the penetrating against metal target, a theoretical expression predicting the residual velocity of PELE perforating...Based on analyzing the conservation of energy of penetrator with enhanced lateral efficiency (PELE) the penetrating against metal target, a theoretical expression predicting the residual velocity of PELE perforating the target is obtained. By modifying De Marre semi-experience formula,the ballistic limit velocities of PELE penetrating into 2024 aluminum alloy and 45# steel targets are also given. The theoretical predictions fit well with experimental or simulative results.展开更多
运用冲击波理论,对横向效应增强型弹丸(Penetration with Enhanced Lateral Efficiency,PELE)侵穿金属靶板的机理进行了分析,将PELE侵彻过程中能量损失分为外壳和内芯撞击靶板区域环形塞块获得的能量,冲击波影响范围内外壳和内芯增加的...运用冲击波理论,对横向效应增强型弹丸(Penetration with Enhanced Lateral Efficiency,PELE)侵穿金属靶板的机理进行了分析,将PELE侵彻过程中能量损失分为外壳和内芯撞击靶板区域环形塞块获得的能量,冲击波影响范围内外壳和内芯增加的内能,外壳前端外沿和内沿对靶板冲塞剪切耗能等,给出了确定这些能量的计算方法;并依据能量守恒原理,给出了PELE正撞金属薄靶板靶后剩余速度的近似计算公式。公式计算结果与多种条件下实验结果均吻合较好。分析计算所得各能量损失结果表明,弹体内芯材料的变化对弹体侵彻能力的影响较小;侵彻中靶板塞块获得的能量在弹体侵彻动能损失中比重最大;外壳前端内沿对靶板的剪切能耗对弹体动能损失的影响可以忽略。展开更多
为了研究横向效应增强型侵彻体(penetrator with enhanced lateral effects,PELE)侵彻金属靶板破碎效应的相似规律,选取PELE的壳体破碎长度和靶后破片散布半径作为衡量PELE破碎效应的两个物理参量,基于量纲理论对PELE破碎效应问题进行...为了研究横向效应增强型侵彻体(penetrator with enhanced lateral effects,PELE)侵彻金属靶板破碎效应的相似规律,选取PELE的壳体破碎长度和靶后破片散布半径作为衡量PELE破碎效应的两个物理参量,基于量纲理论对PELE破碎效应问题进行相似分析,应用AUTODYN软件开展了4组相似模型数值模拟,并进行了两组相似模型验证试验。研究结果表明:通过相似理论分析,确定了PELE破碎效应满足严格的几何相似律。在800~2000 m/s撞击速度范围内,归一化处理的壳体破碎长度和靶后破片散布半径数值模拟结果及试验结果与几何尺寸无关,仅随撞击速度的提升呈线性增长,从而证明了PELE侵彻金属靶的破碎效应满足几何相似律。展开更多
基金supported by the National Natural Science Foundation of China (Grant No: 11472008, 11772160, 11802141)the Opening Project of State Key Laboratory of Explosion Science and Technology (KFJJ18-01M), Beijing Institute of Technology。
文摘When a penetrator with enhanced lateral effect(PELE) impacts on a reinforced concrete(RC) target,the target is damaged with a large opening.An understanding of how PELE projectile parameters affect the opening dimension,is essential for effective design of the PELE projectile.In this study,under the condition that the impact velocity and target parameters(strength and thickness) were fixed values,the important influence factors of the PELE(jacket wall thickness B,jacket material strength Y1,filling material strength Y2 and angle of monolithic jacket θ) were determined by a dimensional analysis.Tests and simulations of the PELE penetrating the RC target were conducted to analyze the influence of these factors on opening diameter(D,an equivalent diameter under relative kinetic energy).Based on the test and simulation results,it is found that the influence of these factors B,Y1 and θ on the deformation mode of the jacket shows a similar trend:as values of the three factors decrease,the jacket deforms from small bending deformation to large one,and then to curling deformation.This causes the opening diameter to first increase with the decrease of these three factors,and then decreases.It is well known that the bending resistance of the jacket is related to these factors B,Y1 and θ.Therefore,a plastic limit bending moment(M0) of the jacket was quoted to characterize the influence of these factors on the bending deformation of the jacket and the opening diameter of the target.The influence factor Y2 causes D to first increase with the increase of Y2,and then decreases.A formula was developed to predict the opening diameter,whose influence parameters were considered in a dimensionless way.It has been shown that the dimensionless opening diameter D/d1 is dependent on two dimensionless parameters■ and■,where d1 and fc are the outer diameter of the projectile and the compressive strength of the target,respectively.
文摘Based on analyzing the conservation of energy of penetrator with enhanced lateral efficiency (PELE) the penetrating against metal target, a theoretical expression predicting the residual velocity of PELE perforating the target is obtained. By modifying De Marre semi-experience formula,the ballistic limit velocities of PELE penetrating into 2024 aluminum alloy and 45# steel targets are also given. The theoretical predictions fit well with experimental or simulative results.
文摘运用冲击波理论,对横向效应增强型弹丸(Penetration with Enhanced Lateral Efficiency,PELE)侵穿金属靶板的机理进行了分析,将PELE侵彻过程中能量损失分为外壳和内芯撞击靶板区域环形塞块获得的能量,冲击波影响范围内外壳和内芯增加的内能,外壳前端外沿和内沿对靶板冲塞剪切耗能等,给出了确定这些能量的计算方法;并依据能量守恒原理,给出了PELE正撞金属薄靶板靶后剩余速度的近似计算公式。公式计算结果与多种条件下实验结果均吻合较好。分析计算所得各能量损失结果表明,弹体内芯材料的变化对弹体侵彻能力的影响较小;侵彻中靶板塞块获得的能量在弹体侵彻动能损失中比重最大;外壳前端内沿对靶板的剪切能耗对弹体动能损失的影响可以忽略。