Objective To establish a domestic database of Enterobacteria cloacae (E. cloacae), and improve the identification efficiency using peptide mass fingerprinting. Methods Peptide mass fingerprinting was used for the id...Objective To establish a domestic database of Enterobacteria cloacae (E. cloacae), and improve the identification efficiency using peptide mass fingerprinting. Methods Peptide mass fingerprinting was used for the identification and subtyping of E. cloacae. Eighty-seven strains, identified based on hsp60 genotyping, were used to construct and evaluate a new reference database. Results Compared with the original reference database, the identification efficiency and accuracy of the new reference database was greatly improved at the species level. The first super reference database for E. cloacae identification was also constructed and evaluated. Based on the super reference database and the main spectra projection dendrogram, E. cloacae strains were divided into two clades. Conclusion Peptide mass fingerprinting is a powerful method to identify and subtype E. cloacae, and the use of this method will allow us to obtain more information to understand the heterogeneous organism E. cloacae.展开更多
Identification of proteins by mass spectrometry (MS) is an essential step in proteomic studies and is typically accomplished by either peptide mass fingerprinting (PMF) or amino acid sequencing of the peptide. Alt...Identification of proteins by mass spectrometry (MS) is an essential step in proteomic studies and is typically accomplished by either peptide mass fingerprinting (PMF) or amino acid sequencing of the peptide. Although sequence information from MS/MS analysis can be used to validate PMF-based protein identification, it may not be practical when analyzing a large number of proteins and when highthroughput MS/MS instrumentation is not readily available. At present, a vast majority of proteomic studies employ PMF. However, there are huge disparities in criteria used to identify proteins using PMF. Therefore, to reduce incorrect protein identification using PMF, and also to increase confidence in PMF-based protein identification without accompanying MS/MS analysis, definitive guiding principles are essential. To this end, we propose a value-based scoring system that provides guidance on evaluating when PMF-based protein identification can be deemed sufficient without accompanying amino acid sequence data from MS/MS analysis.展开更多
AIM: To conduct bhe proteomic analysis of human colorectal carcinoma cell line, SW480 by using two-dimensional electrophoresis (2-DE) and matrix-assisted laser desorption /ionization-time of flight mass spectromet...AIM: To conduct bhe proteomic analysis of human colorectal carcinoma cell line, SW480 by using two-dimensional electrophoresis (2-DE) and matrix-assisted laser desorption /ionization-time of flight mass spectrometry (MALDITOFMS). METHODS: The total proteins of human colorectal carcinoma cell line, SW480 were separated with 2-DE by using immobilized pH gradient strips and visualized by staining with silver nitrate. The gel images were acquired by scanner and 2-DE analysis software, Image Master 2D Elite. Nineteen distinct protein spots were excised from gel randomly and digested in gel by TPCK-trypsin. Mass analysis of the byptic digest peptides mixture was performed by using MALDI-TOF MS. Peptide mass fingerprints (PMFs) obtained by the MALDI-TOF analysis were used to search NCBI, SWISS-PROT and MSDB databases by using Mascot software. RESULTS: PMF maps of all spots were obtained by MALDI-TOF MS and thirteen proteins were preliminarily identified. CONCLUSION: The methods of analysis and identification of protein spots of tumor cells in 2-DE gel with silver staining by MALDI-TOF MS derived PMF have been established. Protein expression profile of SW480 has been obtained. It is demonstrated that a combination of proteomics and cell culture is a useful approach to comprehend the process of colon carcinogenesis.展开更多
基金supported by the Mega Project of Research on the Prevention and Control of HIV/AIDS,Viral Hepatitis Infectious Diseases 2011ZX10004-001,2013ZX10004-101 to YE Chang Yun
文摘Objective To establish a domestic database of Enterobacteria cloacae (E. cloacae), and improve the identification efficiency using peptide mass fingerprinting. Methods Peptide mass fingerprinting was used for the identification and subtyping of E. cloacae. Eighty-seven strains, identified based on hsp60 genotyping, were used to construct and evaluate a new reference database. Results Compared with the original reference database, the identification efficiency and accuracy of the new reference database was greatly improved at the species level. The first super reference database for E. cloacae identification was also constructed and evaluated. Based on the super reference database and the main spectra projection dendrogram, E. cloacae strains were divided into two clades. Conclusion Peptide mass fingerprinting is a powerful method to identify and subtype E. cloacae, and the use of this method will allow us to obtain more information to understand the heterogeneous organism E. cloacae.
文摘Identification of proteins by mass spectrometry (MS) is an essential step in proteomic studies and is typically accomplished by either peptide mass fingerprinting (PMF) or amino acid sequencing of the peptide. Although sequence information from MS/MS analysis can be used to validate PMF-based protein identification, it may not be practical when analyzing a large number of proteins and when highthroughput MS/MS instrumentation is not readily available. At present, a vast majority of proteomic studies employ PMF. However, there are huge disparities in criteria used to identify proteins using PMF. Therefore, to reduce incorrect protein identification using PMF, and also to increase confidence in PMF-based protein identification without accompanying MS/MS analysis, definitive guiding principles are essential. To this end, we propose a value-based scoring system that provides guidance on evaluating when PMF-based protein identification can be deemed sufficient without accompanying amino acid sequence data from MS/MS analysis.
基金Supported by the Natural Science Foundation, Y100-573006Doctoral Foundation of Xi'an Jiaotong University, DFXJTU2002-11
文摘AIM: To conduct bhe proteomic analysis of human colorectal carcinoma cell line, SW480 by using two-dimensional electrophoresis (2-DE) and matrix-assisted laser desorption /ionization-time of flight mass spectrometry (MALDITOFMS). METHODS: The total proteins of human colorectal carcinoma cell line, SW480 were separated with 2-DE by using immobilized pH gradient strips and visualized by staining with silver nitrate. The gel images were acquired by scanner and 2-DE analysis software, Image Master 2D Elite. Nineteen distinct protein spots were excised from gel randomly and digested in gel by TPCK-trypsin. Mass analysis of the byptic digest peptides mixture was performed by using MALDI-TOF MS. Peptide mass fingerprints (PMFs) obtained by the MALDI-TOF analysis were used to search NCBI, SWISS-PROT and MSDB databases by using Mascot software. RESULTS: PMF maps of all spots were obtained by MALDI-TOF MS and thirteen proteins were preliminarily identified. CONCLUSION: The methods of analysis and identification of protein spots of tumor cells in 2-DE gel with silver staining by MALDI-TOF MS derived PMF have been established. Protein expression profile of SW480 has been obtained. It is demonstrated that a combination of proteomics and cell culture is a useful approach to comprehend the process of colon carcinogenesis.