锂-硒电池因其超高的体积能量密度和硒的高电导率而被认为是一种极具有发展前景的锂离子电池。然而,循环过程中电极严重的体积膨胀和多硒化物溶解,以及硒的低负载,阻碍了锂-硒电池应用的发展。解决这三个问题的一种行之有效的方法是将...锂-硒电池因其超高的体积能量密度和硒的高电导率而被认为是一种极具有发展前景的锂离子电池。然而,循环过程中电极严重的体积膨胀和多硒化物溶解,以及硒的低负载,阻碍了锂-硒电池应用的发展。解决这三个问题的一种行之有效的方法是将硒限制在具有丰富孔体积的碳基质中,并同时增强硒与碳的界面相互作用。通过将Se浸入酒石酸盐衍生的蜂窝状三维多孔炭中,合成出了一种具有Se―C键的蜂窝状三维多孔炭@硒(HPC@Se)的新型正极材料用于锂-Se电池。得到的蜂窝状三维多孔炭的孔体积可达1.794 cm^(3)g^(-1),能够均匀包封65%硒。此外,硒与碳之间的强化学键有利于稳定硒,从而进一步缓解其巨大的体积膨胀和多硒化物的溶解,还可促进循环过程中的电荷转移。该HPC@Se正极呈现出极好的循环性能和倍率性能。在0.2 C的电流密度下,经200次循环后,其比容量可保持在561 m Ahg^(-1)(为理论比容量的83%),每次循环的比容量衰减率仅为0.058%。此外,在5 C的高电流密度下,HPC@Se正极还可以达到472.8 m Ahg^(-1)的可观容量。展开更多
The decay of 76Br has been investigated for further study of the 76Se. levels.Gamma ray singles were measured with HpGe-Nal Compton-suppressed spectrometer. Coincidence spectra were collected with two HpGe detectors c...The decay of 76Br has been investigated for further study of the 76Se. levels.Gamma ray singles were measured with HpGe-Nal Compton-suppressed spectrometer. Coincidence spectra were collected with two HpGe detectors coupled to a three-parameter system.There were 138 γ-rays observed, and 120 of these were fitted into 46 levels in 76Se. 37 γ-raysand 15 new energy levels were found for the first time.展开更多
The anti-metabolite chemotherapeutic, gemcitabine is relatively effective for a spectrum of neoplastic conditions that include various forms of leukemia and adenocarcinoma/carcinoma. Rapid systemic deamination of gemc...The anti-metabolite chemotherapeutic, gemcitabine is relatively effective for a spectrum of neoplastic conditions that include various forms of leukemia and adenocarcinoma/carcinoma. Rapid systemic deamination of gemcitabine accounts for a brief plasma half-life but its sustained administration is often curtailed by sequelae and chemotherapeutic-resistance. A molecular strategy that diminishes these limitations is the molecular design and synthetic production of covalent gemcitabine immunoche-motherapeutics that possess properties of selective “targeted” delivery. The simultaneous dual selective “targeted” delivery of gemcitabine at two separate sites on the external surface membrane of a single cancer cell types represents a therapeutic approach that can increase cytosol chemotherapeutic deposition;prolong chemotherapeutic plasma half-life (reduces administration frequency);minimize innocent exposure of normal tissues and healthy organ systems;and ultimately enhance more rapid and thorough resolution of neoplastic cell populations. Materials and Methods: A light-reactive gemcitabine intermediate synthesized utilizing succinimidyl 4,4-azipentanoate was covalently bound to anti-EGFR or anti-HER2/neu IgG by exposure to UV light (354-nm) resulting in the synthesis of covalent immunoche-motherapeutics, gemcitabine-(C4-amide)-[anti-EGFR] and gemcitabine-(C4-amide)-[anti-HER2/neu]. Cytotoxic anti-neoplastic potency of gemcitabine-(C4-amide)-[anti-EGFR] and gemcitabine-(C4-amide)-[anti-HER2/neu] between?gemcitabine-equivalent concentrations of 10-12 M and 10-6 M was determined utilizing chemotherapeutic-resistant mammary adenocarcinoma (SKRr-3). The organoselenium compound, [Se]-methylselenocysteine was evaluated to determine if it complemented the anti-neoplastic potency of the covalent gemcitabine immunoche-motherapeutics. Results: Gemcitabine-(C4-amide)-[anti-EGFR], gemcitabine-(C4-amide)-[anti-HER2/neu] and the dual simultaneous combination of gemcitabine-(C4-amide)-[anti-EGFR] with gemcitabine-(C4-amide)-[anti-HER2/neu] all had anti-neoplastic cytotoxic potency against mammary adenocarcinoma. Gemcitabine-(C4-amide)-[anti-EGFR] and gemcitabine-(C4-amide)-[anti-HER2/neu] produced progressive increases in anti-neoplastic cytotoxicity that were greatest between gemcitabine-equivalent concentrations of 10-9 M and 10-6 M. Dual simultaneous combinations of gemcitabine-(C4-amide)-[anti-EGFR] with gemcitabine-(C4-amide)-[anti-HER2/neu] produced levels of anti-neoplastic cytotoxicity intermediate between each of the individual covalent gemcitabine immunochemotherapeutics. Total anti-neoplastic cytotoxicity of the dual simultaneous combination of gemcitabine-(C4-amide)-[anti-EGFR] and gemcitabine-(C4-amide)-[anti-HER2/neu] against chemothe-rapeutic-resistant mammary adenocarcinoma (SKBr-3) was substantially higher when formulated with [Se]-methylsele-no-cysteine.展开更多
文摘锂-硒电池因其超高的体积能量密度和硒的高电导率而被认为是一种极具有发展前景的锂离子电池。然而,循环过程中电极严重的体积膨胀和多硒化物溶解,以及硒的低负载,阻碍了锂-硒电池应用的发展。解决这三个问题的一种行之有效的方法是将硒限制在具有丰富孔体积的碳基质中,并同时增强硒与碳的界面相互作用。通过将Se浸入酒石酸盐衍生的蜂窝状三维多孔炭中,合成出了一种具有Se―C键的蜂窝状三维多孔炭@硒(HPC@Se)的新型正极材料用于锂-Se电池。得到的蜂窝状三维多孔炭的孔体积可达1.794 cm^(3)g^(-1),能够均匀包封65%硒。此外,硒与碳之间的强化学键有利于稳定硒,从而进一步缓解其巨大的体积膨胀和多硒化物的溶解,还可促进循环过程中的电荷转移。该HPC@Se正极呈现出极好的循环性能和倍率性能。在0.2 C的电流密度下,经200次循环后,其比容量可保持在561 m Ahg^(-1)(为理论比容量的83%),每次循环的比容量衰减率仅为0.058%。此外,在5 C的高电流密度下,HPC@Se正极还可以达到472.8 m Ahg^(-1)的可观容量。
文摘The decay of 76Br has been investigated for further study of the 76Se. levels.Gamma ray singles were measured with HpGe-Nal Compton-suppressed spectrometer. Coincidence spectra were collected with two HpGe detectors coupled to a three-parameter system.There were 138 γ-rays observed, and 120 of these were fitted into 46 levels in 76Se. 37 γ-raysand 15 new energy levels were found for the first time.
文摘The anti-metabolite chemotherapeutic, gemcitabine is relatively effective for a spectrum of neoplastic conditions that include various forms of leukemia and adenocarcinoma/carcinoma. Rapid systemic deamination of gemcitabine accounts for a brief plasma half-life but its sustained administration is often curtailed by sequelae and chemotherapeutic-resistance. A molecular strategy that diminishes these limitations is the molecular design and synthetic production of covalent gemcitabine immunoche-motherapeutics that possess properties of selective “targeted” delivery. The simultaneous dual selective “targeted” delivery of gemcitabine at two separate sites on the external surface membrane of a single cancer cell types represents a therapeutic approach that can increase cytosol chemotherapeutic deposition;prolong chemotherapeutic plasma half-life (reduces administration frequency);minimize innocent exposure of normal tissues and healthy organ systems;and ultimately enhance more rapid and thorough resolution of neoplastic cell populations. Materials and Methods: A light-reactive gemcitabine intermediate synthesized utilizing succinimidyl 4,4-azipentanoate was covalently bound to anti-EGFR or anti-HER2/neu IgG by exposure to UV light (354-nm) resulting in the synthesis of covalent immunoche-motherapeutics, gemcitabine-(C4-amide)-[anti-EGFR] and gemcitabine-(C4-amide)-[anti-HER2/neu]. Cytotoxic anti-neoplastic potency of gemcitabine-(C4-amide)-[anti-EGFR] and gemcitabine-(C4-amide)-[anti-HER2/neu] between?gemcitabine-equivalent concentrations of 10-12 M and 10-6 M was determined utilizing chemotherapeutic-resistant mammary adenocarcinoma (SKRr-3). The organoselenium compound, [Se]-methylselenocysteine was evaluated to determine if it complemented the anti-neoplastic potency of the covalent gemcitabine immunoche-motherapeutics. Results: Gemcitabine-(C4-amide)-[anti-EGFR], gemcitabine-(C4-amide)-[anti-HER2/neu] and the dual simultaneous combination of gemcitabine-(C4-amide)-[anti-EGFR] with gemcitabine-(C4-amide)-[anti-HER2/neu] all had anti-neoplastic cytotoxic potency against mammary adenocarcinoma. Gemcitabine-(C4-amide)-[anti-EGFR] and gemcitabine-(C4-amide)-[anti-HER2/neu] produced progressive increases in anti-neoplastic cytotoxicity that were greatest between gemcitabine-equivalent concentrations of 10-9 M and 10-6 M. Dual simultaneous combinations of gemcitabine-(C4-amide)-[anti-EGFR] with gemcitabine-(C4-amide)-[anti-HER2/neu] produced levels of anti-neoplastic cytotoxicity intermediate between each of the individual covalent gemcitabine immunochemotherapeutics. Total anti-neoplastic cytotoxicity of the dual simultaneous combination of gemcitabine-(C4-amide)-[anti-EGFR] and gemcitabine-(C4-amide)-[anti-HER2/neu] against chemothe-rapeutic-resistant mammary adenocarcinoma (SKBr-3) was substantially higher when formulated with [Se]-methylsele-no-cysteine.