Carex brunnescens(Pers.), a typical clonal species, is considered to be the only herb found to date that can develop on sand dunes in Maqu alpine region of northwestern China. However, the characteristics that C. br...Carex brunnescens(Pers.), a typical clonal species, is considered to be the only herb found to date that can develop on sand dunes in Maqu alpine region of northwestern China. However, the characteristics that C. brunnescens resists to harsh alpine environment have not been documented. In this study, we conducted a field investigation to determine the morphological, reproductive, and sand-fixing characteristics of C. brunnescens. Concomitantly, we transplanted the belowground rhizomes of C. brunnescens to sand dunes and compared the abilities to restore degraded alpine meadows among sand dunes that had no further treatment(SD+N), sand dunes that had straw checkerboard technique but no transplanted rhizomes of C. brunnescens(SD+SCT), and sand dunes that had both SCT and transplanted rhizomes of C. brunnescens(SD+SCT+P). We found that belowground vertical rhizomes and horizontal rhizomes(including branching rhizomes and main rhizomes) of C. brunnescens were highly developed and that population reproduction was dominated by horizontal rhizomes. C. brunnescens exhibited a significant sand-fixation effect under following conditions: population density was 145–156 ramets/m^2, vegetation cover was 31.2%–39.3%, total length of belowground rhizomes was 11,223 cm/m^2, total length of belowground first-order roots was 9161–10,524 cm/m^2, fresh weight of aboveground part was 198.5–212.6 g/m^2, and fresh weight of belowground part was 578.8–612.4 g/m^2. It should be particularly noted that SD+SCT+P treatment(sand dunes that had both straw checkerboard technique and transplanted rhizomes of C. brunnescens) was the best and SD+N(sand dunes that had no further treatment) was the worst in terms of following biotic indicators: total number of reproductive ramets, total number of belowground rhizomes, and fresh weight of aboveground and belowground parts of C. brunnescens, contents of soil organic carbon, available nitrogen, microbial biomass carbon, and microbial biomass nitrogen. It implies that applying SCT in sand dunes and transplanting belowground rhizomes to sand dunes with SCT could improve both soil fertility and growth of C. brunnescens. These results suggest that the SCT-promoted high reproductive abilities of belowground rhizomes of C. brunnescens can successfully facilitate the establishment of ramets and can thus be an effective strategy to restore degraded vegetation in Maqu alpine region of northwestern China.展开更多
Ramet modules in a certain population differ in terms of functions,which accounts for different contributions of the same ramets.Shortening heading time brings about different contributions of such modules.Ramets head...Ramet modules in a certain population differ in terms of functions,which accounts for different contributions of the same ramets.Shortening heading time brings about different contributions of such modules.Ramets heading one after another were treated as a continuum in respective cohorts of Elymus cylindricus aged two.The reproductive ramets that head earlier were marked with tags every four days during the whole heading stage from the beginning to the end,after which all the labeled ramets at the maturity period were gathered.The results showed that,the height and biomass of ramets,the length and biomass of inflorescences,percentage of inflorescence length to ramet height,percentage of inflorescence biomass to ramet biomass,the number and biomass of seeds,seed-setting rate,and percentage of seed biomass to ramet biomass declined with the increasing intensity of heading time shortening as displayed with linear or quadratic function.Ramet characteristics weakened remarkably when shortened heading time added up to 17 days.The biomass distribution in relation to inflorescence and seed maintain a stable rate at the early heading stage and dwindled quickly at the near-end stage,but the biomass of ramets remain constant throughout the entire heading stage.The ramets with earlier heading time make greater contribution to the survival of population than the shortened heading time in this species of bunchgrass.展开更多
基金supported by the National Natural Science Foundation of China (31360087, 31360086)
文摘Carex brunnescens(Pers.), a typical clonal species, is considered to be the only herb found to date that can develop on sand dunes in Maqu alpine region of northwestern China. However, the characteristics that C. brunnescens resists to harsh alpine environment have not been documented. In this study, we conducted a field investigation to determine the morphological, reproductive, and sand-fixing characteristics of C. brunnescens. Concomitantly, we transplanted the belowground rhizomes of C. brunnescens to sand dunes and compared the abilities to restore degraded alpine meadows among sand dunes that had no further treatment(SD+N), sand dunes that had straw checkerboard technique but no transplanted rhizomes of C. brunnescens(SD+SCT), and sand dunes that had both SCT and transplanted rhizomes of C. brunnescens(SD+SCT+P). We found that belowground vertical rhizomes and horizontal rhizomes(including branching rhizomes and main rhizomes) of C. brunnescens were highly developed and that population reproduction was dominated by horizontal rhizomes. C. brunnescens exhibited a significant sand-fixation effect under following conditions: population density was 145–156 ramets/m^2, vegetation cover was 31.2%–39.3%, total length of belowground rhizomes was 11,223 cm/m^2, total length of belowground first-order roots was 9161–10,524 cm/m^2, fresh weight of aboveground part was 198.5–212.6 g/m^2, and fresh weight of belowground part was 578.8–612.4 g/m^2. It should be particularly noted that SD+SCT+P treatment(sand dunes that had both straw checkerboard technique and transplanted rhizomes of C. brunnescens) was the best and SD+N(sand dunes that had no further treatment) was the worst in terms of following biotic indicators: total number of reproductive ramets, total number of belowground rhizomes, and fresh weight of aboveground and belowground parts of C. brunnescens, contents of soil organic carbon, available nitrogen, microbial biomass carbon, and microbial biomass nitrogen. It implies that applying SCT in sand dunes and transplanting belowground rhizomes to sand dunes with SCT could improve both soil fertility and growth of C. brunnescens. These results suggest that the SCT-promoted high reproductive abilities of belowground rhizomes of C. brunnescens can successfully facilitate the establishment of ramets and can thus be an effective strategy to restore degraded vegetation in Maqu alpine region of northwestern China.
基金This work was funded under the auspices of the Natural Key Research and Development Program of China(2016YFC0500602)National Natural Science Foundation of China(31672471,31472134,www.nsfc.gov.cn,YFY+1 种基金31570332,www.nsfc.gov.cn,CZ)the Program of Introducing Talents of Discipline to Universities(B16011).
文摘Ramet modules in a certain population differ in terms of functions,which accounts for different contributions of the same ramets.Shortening heading time brings about different contributions of such modules.Ramets heading one after another were treated as a continuum in respective cohorts of Elymus cylindricus aged two.The reproductive ramets that head earlier were marked with tags every four days during the whole heading stage from the beginning to the end,after which all the labeled ramets at the maturity period were gathered.The results showed that,the height and biomass of ramets,the length and biomass of inflorescences,percentage of inflorescence length to ramet height,percentage of inflorescence biomass to ramet biomass,the number and biomass of seeds,seed-setting rate,and percentage of seed biomass to ramet biomass declined with the increasing intensity of heading time shortening as displayed with linear or quadratic function.Ramet characteristics weakened remarkably when shortened heading time added up to 17 days.The biomass distribution in relation to inflorescence and seed maintain a stable rate at the early heading stage and dwindled quickly at the near-end stage,but the biomass of ramets remain constant throughout the entire heading stage.The ramets with earlier heading time make greater contribution to the survival of population than the shortened heading time in this species of bunchgrass.