The paper aimed to study the effects of nitrogen fertilization on the yield and some plant characteristics of perennial ryegrass (Lolium perenne L.). The study was conducted at Agricultural Research and Application Ce...The paper aimed to study the effects of nitrogen fertilization on the yield and some plant characteristics of perennial ryegrass (Lolium perenne L.). The study was conducted at Agricultural Research and Application Center of the Faculty of Agriculture in Igdir University in 2013. In the experiment, eight levels of fertilizers: 0, 10.0, 20.0, 30.0, 40.0, 50.0, 60.0 and 70.0 kg N/ha per month were applied in perennial ryegrass (Lolium perenne L.) during the sixth growing season. A randomized complete block with three replications was used as the experimental design. Nitrogen application affected plant height, green grass yield, plant covering rate, canopy color and turfgrass quality values of perennial ryegrass positively. In both monthly and as the average of nitrogen application, times of application (spring, summer and fall) caused the most uniform turfgrass quality and establishment. Results indicated that although a significant impact was on the character investigated, such as the leaf length, green grass yield, plant cover ratio, canopy color and turfgrass quality, the doses of nitrogen fertilizer have created close to each other in groups. In the stand point of view of all characters, N1, N2 and N3 were located in first group, N4 and N5 in the second group, N6 and N7 in the third group, expect for control (N0). It can be concluded that 40.0-50.0 kg N/ha per month may be more suitable to be used in ryegrass production in the landscape.展开更多
Italian ryegrass is an annual/biennial grass that is typically used as a pasture crop or a cover crop along roadsides, rights-of-way, and industrial areas. Glyphosate-resistant (GR) Italian ryegrass populations have b...Italian ryegrass is an annual/biennial grass that is typically used as a pasture crop or a cover crop along roadsides, rights-of-way, and industrial areas. Glyphosate-resistant (GR) Italian ryegrass populations have been documented around the world, mostly in orchard and vineyard situations. The first evidence of evolved GR Italian ryegrass in row/agronomic crops was reported from Washington County, Mississippi in 2005. GR Italian ryegrass populations can jeopardize preplant burndown options in reduced-tillage crop production systems, thereby, delaying planting operations. The effects of competition of Italian ryegrass on crop growth and yield are poorly understood. A field study was conducted in the 2012 growing season and repeated in the 2013 growing season. GR and susceptible (GS) Italian ryegrass populations were established in the greenhouse and transplanted in prepared corn row beds in the fall of 2011 and 2012 at 0, 1, 2, 3, and 4 plants·meter> of crop row. Italian ryegrass plants overwintered and developed over the following spring-summer. Glyphosate was applied at 1.26 kg·ae/ha (1.5× of labeled rate) in the spring to burndown the Italian ryegrass plants and corn was planted into the ryegrass residue 2 - 3 wk later. Current corn production practices were followed. Corn density (early and late season), height (early season), and yield and Italian ryegrass biomass (early-mid season) measurements were recorded during both years. Corn height was greater in 2012 than that in 2013 at comparable stages of the growing season, due to a cooler and wetter early season in 2013 than that in 2012. Averaged across weed densities, corn density (both early and late season) and yield were higher in the GS than those in the GR population, but Italian ryegrass biomass was similar for both populations. Averaged across Italian ryegrass populations, corn density (both early and late season), and yield were inversely proportional to Italian ryegrass density. In summary, Italian ryegrass significantly reduced corn density and yield and reduction was greater with the GR than that with the GS population. Studies are underway to study inter population competition in Italian ryegrass and investigate allelopathic effects of Italian ryegrass on selected crops.展开更多
To restore vegetation on metal mine tailings is very difficult because theyoften contain high concentrations of heavy metals, low nutrient content and low water retentioncapacity. This study involved 3 experiments tha...To restore vegetation on metal mine tailings is very difficult because theyoften contain high concentrations of heavy metals, low nutrient content and low water retentioncapacity. This study involved 3 experiments that evaluated the effects of 4 treatment amendments:montmorillonite, rice straw, organic manure and chemical fertilizer on the growth of ryegrass(Lolium perenne L.) and willow (Salix viminalis L.) with Cu and Zn mine tailings from two miningareas. The results showed that ryegrass was the most tolerant of 4 crops to Cu toxicity. Also whenorganic manure, which contained high concentrations of inorganic salts, was added to the minetailings, it significantly hindered ryegrass growth (P = 0.05). Meanwhile, with ryegrass organicmanure significantly increased (P = 0.05) the extractable Cu concentration in both mine tailings.When montmorillonite was used as a mine tailings amendment with willow, the height and tress numberat the 1st cut were significantly greater (P = 0.05) than a control without montmorillonite. Howeverthere was no significant difference for height, tress number, dry weight or root dry weight at the2nd cut. So, amendment applications to reduce metal toxicity and increase nutrients retention inmine tailings were essential during revegetation of mine tailings.展开更多
Selecting plants adapted to the climatic and soil conditions of specific locations is essential for environmental protection and economic sustainability of agricultural and pastoral systems. This is particularly true ...Selecting plants adapted to the climatic and soil conditions of specific locations is essential for environmental protection and economic sustainability of agricultural and pastoral systems. This is particularly true for countries like China with a diversity of climates and soils and intended uses. Currently, proper species selection is difficult due to the absence of computer-based selection tools. Climate and soil GIS layers, matched with a matrix of plant characteristics through rules describing species tolerances would greatly improve the selection process. Better matching will reduce environmental hazards and economic risks associated with sub-optimal plant selection and performance. GIS-based climate and soil maps have been developed for China. A matrix of quantitative species tolerances has been developed for example forage species and used in combination with an internet map server that allows customized map creation. A web-based decision support system has been developed to provide current information and links to original data sources, supplementary materials, and selection strategies.展开更多
采用营养液培养法,研究了不同Zn浓度(0,0.25,0.50,1.00,2.00 mm o l/L)对黑麦草幼苗生长、过氧化物酶活性、脯氨酸、根系活力及Zn吸收的影响。结果表明,低锌胁迫对黑麦草幼苗生长无抑制,过度锌胁迫(Zn≥2 mm o l/L)将降低黑麦草地上部...采用营养液培养法,研究了不同Zn浓度(0,0.25,0.50,1.00,2.00 mm o l/L)对黑麦草幼苗生长、过氧化物酶活性、脯氨酸、根系活力及Zn吸收的影响。结果表明,低锌胁迫对黑麦草幼苗生长无抑制,过度锌胁迫(Zn≥2 mm o l/L)将降低黑麦草地上部干质量。幼苗叶内游离脯氨酸含量随锌胁迫时间、锌浓度增加而增加。随Zn胁迫时间增加幼苗POD活性先降后升、根系活力先升后降,锌处理的植株地上部POD活性随锌浓度增加先降低,然后增加,而根系活力随锌浓度增加而增加。黑麦草幼苗地上部和根系Zn含量随Zn浓度的增加而增加,当Zn浓度为2.00 mm o l/L时,地上部Zn含量最大值为775.0 m g/kg。展开更多
文摘The paper aimed to study the effects of nitrogen fertilization on the yield and some plant characteristics of perennial ryegrass (Lolium perenne L.). The study was conducted at Agricultural Research and Application Center of the Faculty of Agriculture in Igdir University in 2013. In the experiment, eight levels of fertilizers: 0, 10.0, 20.0, 30.0, 40.0, 50.0, 60.0 and 70.0 kg N/ha per month were applied in perennial ryegrass (Lolium perenne L.) during the sixth growing season. A randomized complete block with three replications was used as the experimental design. Nitrogen application affected plant height, green grass yield, plant covering rate, canopy color and turfgrass quality values of perennial ryegrass positively. In both monthly and as the average of nitrogen application, times of application (spring, summer and fall) caused the most uniform turfgrass quality and establishment. Results indicated that although a significant impact was on the character investigated, such as the leaf length, green grass yield, plant cover ratio, canopy color and turfgrass quality, the doses of nitrogen fertilizer have created close to each other in groups. In the stand point of view of all characters, N1, N2 and N3 were located in first group, N4 and N5 in the second group, N6 and N7 in the third group, expect for control (N0). It can be concluded that 40.0-50.0 kg N/ha per month may be more suitable to be used in ryegrass production in the landscape.
文摘Italian ryegrass is an annual/biennial grass that is typically used as a pasture crop or a cover crop along roadsides, rights-of-way, and industrial areas. Glyphosate-resistant (GR) Italian ryegrass populations have been documented around the world, mostly in orchard and vineyard situations. The first evidence of evolved GR Italian ryegrass in row/agronomic crops was reported from Washington County, Mississippi in 2005. GR Italian ryegrass populations can jeopardize preplant burndown options in reduced-tillage crop production systems, thereby, delaying planting operations. The effects of competition of Italian ryegrass on crop growth and yield are poorly understood. A field study was conducted in the 2012 growing season and repeated in the 2013 growing season. GR and susceptible (GS) Italian ryegrass populations were established in the greenhouse and transplanted in prepared corn row beds in the fall of 2011 and 2012 at 0, 1, 2, 3, and 4 plants·meter> of crop row. Italian ryegrass plants overwintered and developed over the following spring-summer. Glyphosate was applied at 1.26 kg·ae/ha (1.5× of labeled rate) in the spring to burndown the Italian ryegrass plants and corn was planted into the ryegrass residue 2 - 3 wk later. Current corn production practices were followed. Corn density (early and late season), height (early season), and yield and Italian ryegrass biomass (early-mid season) measurements were recorded during both years. Corn height was greater in 2012 than that in 2013 at comparable stages of the growing season, due to a cooler and wetter early season in 2013 than that in 2012. Averaged across weed densities, corn density (both early and late season) and yield were higher in the GS than those in the GR population, but Italian ryegrass biomass was similar for both populations. Averaged across Italian ryegrass populations, corn density (both early and late season), and yield were inversely proportional to Italian ryegrass density. In summary, Italian ryegrass significantly reduced corn density and yield and reduction was greater with the GR than that with the GS population. Studies are underway to study inter population competition in Italian ryegrass and investigate allelopathic effects of Italian ryegrass on selected crops.
基金Project supported by the State Key Basic Research Foundation (No. 2002CB410808) the Director Foundation of theInstitute of Soil Science, Chinese Academy of Sciences (No. ISSASIP0102) the Knowledge Innovative Program of Chinese Academy of Sciences (N
文摘To restore vegetation on metal mine tailings is very difficult because theyoften contain high concentrations of heavy metals, low nutrient content and low water retentioncapacity. This study involved 3 experiments that evaluated the effects of 4 treatment amendments:montmorillonite, rice straw, organic manure and chemical fertilizer on the growth of ryegrass(Lolium perenne L.) and willow (Salix viminalis L.) with Cu and Zn mine tailings from two miningareas. The results showed that ryegrass was the most tolerant of 4 crops to Cu toxicity. Also whenorganic manure, which contained high concentrations of inorganic salts, was added to the minetailings, it significantly hindered ryegrass growth (P = 0.05). Meanwhile, with ryegrass organicmanure significantly increased (P = 0.05) the extractable Cu concentration in both mine tailings.When montmorillonite was used as a mine tailings amendment with willow, the height and tress numberat the 1st cut were significantly greater (P = 0.05) than a control without montmorillonite. Howeverthere was no significant difference for height, tress number, dry weight or root dry weight at the2nd cut. So, amendment applications to reduce metal toxicity and increase nutrients retention inmine tailings were essential during revegetation of mine tailings.
文摘Selecting plants adapted to the climatic and soil conditions of specific locations is essential for environmental protection and economic sustainability of agricultural and pastoral systems. This is particularly true for countries like China with a diversity of climates and soils and intended uses. Currently, proper species selection is difficult due to the absence of computer-based selection tools. Climate and soil GIS layers, matched with a matrix of plant characteristics through rules describing species tolerances would greatly improve the selection process. Better matching will reduce environmental hazards and economic risks associated with sub-optimal plant selection and performance. GIS-based climate and soil maps have been developed for China. A matrix of quantitative species tolerances has been developed for example forage species and used in combination with an internet map server that allows customized map creation. A web-based decision support system has been developed to provide current information and links to original data sources, supplementary materials, and selection strategies.
文摘采用营养液培养法,研究了不同Zn浓度(0,0.25,0.50,1.00,2.00 mm o l/L)对黑麦草幼苗生长、过氧化物酶活性、脯氨酸、根系活力及Zn吸收的影响。结果表明,低锌胁迫对黑麦草幼苗生长无抑制,过度锌胁迫(Zn≥2 mm o l/L)将降低黑麦草地上部干质量。幼苗叶内游离脯氨酸含量随锌胁迫时间、锌浓度增加而增加。随Zn胁迫时间增加幼苗POD活性先降后升、根系活力先升后降,锌处理的植株地上部POD活性随锌浓度增加先降低,然后增加,而根系活力随锌浓度增加而增加。黑麦草幼苗地上部和根系Zn含量随Zn浓度的增加而增加,当Zn浓度为2.00 mm o l/L时,地上部Zn含量最大值为775.0 m g/kg。