On the basis of the general theory of perforated thin plates under large deflections, variational principles with deflection w and stress function F as variables are stated in detail.Based on these princi- ples,finite...On the basis of the general theory of perforated thin plates under large deflections, variational principles with deflection w and stress function F as variables are stated in detail.Based on these princi- ples,finite element method is established for analysing the buckling and post-buckling of perforated thin plates. It is found that the property of element is very complicated,owing to the multiple connexity of the region.展开更多
On foe basis of the Kirchoff-Karman hypothses for the nonlinear bending of thin plates, the three kinds of boundary value problems of nonlinear analysis for perforated fhin plates are presented under the differenr in...On foe basis of the Kirchoff-Karman hypothses for the nonlinear bending of thin plates, the three kinds of boundary value problems of nonlinear analysis for perforated fhin plates are presented under the differenr in-plane boundary conditions and the corresponding generalized varialional principles are established. One can see that all mathematical models presented in this paper are completely new ones and differ from the ordinary von Karman theory. These mathematical models can be applied to the nonlinear analysis and the Stability analysis of perforaled thin plates in arbitraryplane boundary conditions.展开更多
基金Project supported by National Natural Science Foundation of China.
文摘On the basis of the general theory of perforated thin plates under large deflections, variational principles with deflection w and stress function F as variables are stated in detail.Based on these princi- ples,finite element method is established for analysing the buckling and post-buckling of perforated thin plates. It is found that the property of element is very complicated,owing to the multiple connexity of the region.
文摘On foe basis of the Kirchoff-Karman hypothses for the nonlinear bending of thin plates, the three kinds of boundary value problems of nonlinear analysis for perforated fhin plates are presented under the differenr in-plane boundary conditions and the corresponding generalized varialional principles are established. One can see that all mathematical models presented in this paper are completely new ones and differ from the ordinary von Karman theory. These mathematical models can be applied to the nonlinear analysis and the Stability analysis of perforaled thin plates in arbitraryplane boundary conditions.