Game-tree search plays an important role in the field of Artificial Intelligence (AI). In this paper, we characterize one parallel game-tree search workload in chess: the latest version of Crafty, a state of art pr...Game-tree search plays an important role in the field of Artificial Intelligence (AI). In this paper, we characterize one parallel game-tree search workload in chess: the latest version of Crafty, a state of art program, on two Intel Xeon shared-memory multiprocessor systems. Our analysis shows that Crafty is latency-sensitive and the hash-table and dynamic tree splitting used in Crafty cause large scalability penalties. They consume 35%-50% of the running time on the 4-way system. Furthermore, Crafty is not bandwidth-limited.展开更多
To relieve dust pollution in open cut coal mines and reduce the hazards of coal dust pollution to the environment and workers we optimized the synthesis of a dust suppressant by graft copolymerization of environmental...To relieve dust pollution in open cut coal mines and reduce the hazards of coal dust pollution to the environment and workers we optimized the synthesis of a dust suppressant by graft copolymerization of environmentally friendly soy protein isolate with methyl methacrylate.This dust suppressant could effectively control dust pollution in open cut coal mines. The optimized conditions for graft copolymerization in this case were determined by a response surface experiment designed with Design-Expert 10 software. Characterization by scanning electron microscopy showed a significant morphology change of the dust suppressant and the generation of a rigid and dense layer on its surface after interacting with coal dust.The layer exhibited good bonding and dust suppression performance. The analysis with Fourier-transform infrared spectroscopy revealed the appearance of new absorption peaks near 1300, 1072, and 1631 cm, demonstrating effective graft copolymerization. The proposed dust suppressant exhibited excellent wind erosion resistance, with a resistance that exceeded 90% at a wind speed of 6.5 m/sec. The successful graft copolymerization and effective bonding and curing of the dust suppressant on coal dust were experimentally verified.This is of great significance to the control of coal dust pollution.展开更多
Graphics processing is an increasing important application domain with the demand of real-time rendering,video streaming,virtual reality,and so on.Illumination is a critical module in graphics rendering and is typical...Graphics processing is an increasing important application domain with the demand of real-time rendering,video streaming,virtual reality,and so on.Illumination is a critical module in graphics rendering and is typically compute-bound,memory-bound,and power-bound in different application cases.It is crucial to decide how to schedule different illumination algorithms with different features according to the practical requirements in reconfigurable graphics hardware.This paper analyze the performance characteristics of four main-stream lighting algorithms,Lambert illumination algorithm,Phong illumination algorithm,Blinn-Phong illumination algorithm,and Cook-Torrance illumination algorithm,using hardware performance counters on x86 processor platform KabyLake(KBL).The data movement,computation,power consumption,and memory accessing are evaluated over a range of application scenarios.Further,by analyzing the system-level behavior of these illumination algorithms,obtains the cons and pros of these specific algorithms were obtained.The associated relationship between performance/energy and the evaluated metrics was analyzed through Pearson correlation coefficient(PCC)analysis.According to these performance characterization data,this paper presents some reconfiguration suggestions in reconfigurable graphics processor.展开更多
A method to measure the detailed performance of polycapillary x-ray optics by a pinhole and charge coupled device(CCD)detector was proposed in this study.The pinhole was located between the x-ray source and the polyca...A method to measure the detailed performance of polycapillary x-ray optics by a pinhole and charge coupled device(CCD)detector was proposed in this study.The pinhole was located between the x-ray source and the polycapillary x-ray optics to determine the illuminating region of the incident x-ray beam on the input side of the optics.The CCD detector placed downstream of the polycapillary x-ray optics ensured that the incident x-ray beam controlled by the pinhole irradiated a specific region of the input surface of the optics.The intensity of the output beam of the polycapillary x-ray optics was obtained from the far-field image of the output beam of the optics captured by CCD detector.As an application example,the focal spot size,gain in power density,transmission efficiency,and beam divergence of different parts of a polycapillary focusing x-ray lenses(PFXRL)were measured by a pinhole and CCD detector.Three pinholes with diameters of 500,1000,and 2000μm were used to adjust the diameter of the incident x-ray beam illuminating the PFXRL from 500μm to the entire surface of the input side of the PFXRL.The focal spot size of the PFXRL,gain in power density,transmission efficiency,and beam divergence ranged from 27.1μm to 34.6μm,400 to 3460,26.70%to 5.38%,and 16.8 mrad to 84.86 mrad,respectively.展开更多
A thimble zirconia oxygen sensor electrolyte and their interface were observed with was prepared with YSZ. The surfaces of the Pt electrode, a scanning electron microscope (SEM).The sensor was examined with engine b...A thimble zirconia oxygen sensor electrolyte and their interface were observed with was prepared with YSZ. The surfaces of the Pt electrode, a scanning electron microscope (SEM).The sensor was examined with engine bench test to evaluate the essential performance. The basic function such as electromotive force output and response time was discussed. The oscillograph trace was also obtained and analyzed with four different frequencies. The experimental results reveal that the oxygen sensor has high performances meeting the demands of practical applications..展开更多
The electronic modification effect of various metal oxides over Pt-Al;O;catalyst andthe relationships between the polarizing force of cations(PFC)and the electrophiliccharacter(EC)and catalytic performances(CP)o...The electronic modification effect of various metal oxides over Pt-Al;O;catalyst andthe relationships between the polarizing force of cations(PFC)and the electrophiliccharacter(EC)and catalytic performances(CP)of promoted Pt catalyst have been studiecby competitive hydrogenation reaction method(CHRM)and test reaction,i.e.hydrogena-tion of benzene and hydrogenolysis of cyclopentane.展开更多
In this study,pre-concentrated bark,furfuryl alcohol and other biomass raw materials were used to prepare foaming materials by high-speed mechanical stirring without using a foaming agent.We investigated the effect of...In this study,pre-concentrated bark,furfuryl alcohol and other biomass raw materials were used to prepare foaming materials by high-speed mechanical stirring without using a foaming agent.We investigated the effect of the postadded water amount on the properties of foaming materials.In particular,we determined basic physical properties of these materials,including the limiting oxygen index(LOI),porosity,thermal conductivity,thermogravimetric analysis,pore size distribution,and microstructure.The results of scanning electron microscopy(SEM)indicated that the pore size distribution was uniform and the pore size increased with increasing water volume.Thermogravimetric analysis(TG/DTG)showed that when the temperature reached 410°C,the foam was easily decomposed,the final residual mass was only 2.8%,and water addition had little effect on it.Moreover,the amount of post-added water is 5–30 g,the density and compression strength of the foamed materials gradually decreased,while the degree of pulverization increased.LOI ranged from 26.1%to 30.79%,and porosity ranged from 81%to 83%.The change in water volume greatly affected the foam’s performance,the performance of foamed material deteriorated as the amount of added water increased,but the effect on thermal conductivity was not very obvious.The highest thermal conductivity was only 0.0179 W/(m·K),still providing excellent thermal insulation.展开更多
It is important to be able to characterize the thermal conditions over the equatorial Indian Ocean for both weather forecasting and climate prediction. This study compared the equatorial eastern Indian Ocean (EEIO) te...It is important to be able to characterize the thermal conditions over the equatorial Indian Ocean for both weather forecasting and climate prediction. This study compared the equatorial eastern Indian Ocean (EEIO) temperature and relative humidity profiles from three reanalysis products (JRA-55, MERRA2, and FGOALS-f2) with shipboard global positioning system (GPS) sounding measurements obtained during the Eastern Indian Ocean Open Cruise in spring 2018. The FGOALS-f2 reanalysis product is based on the initialization module of a sub-seasonal to seasonal prediction system with a nudging-based data assimilation method. The results indicated that:(1) both JRA-55 and MERRA2 were reliable in characterizing the temperature profile from 850 to 600 hPa, with a maximum deviation of about <0.5℃. Both datasets showed a large negative deviation below 825 hPa, with a maximum bias of about 2℃ at 1000 hPa and 1.5℃ at 900 hPa, respectively.(2) JRA-55 showed good performance in characterizing the relative humidity profile above 850 hPa, with a maximum deviation of < 8%, while it showed much wetter conditions below 850 hPa. MERRA2 overestimated the relative humidity in the middle to lower troposphere, with a maximum deviation of about 15% at 925 hPa.(3) The FGOALS-f2 reanalysis product more accurately reproduced the temperature profile in the marine atmospheric boundary layer over the EEIO than that in JRA-55 and MERRA2, but showed much wetter conditions than the GPS sounding observations, with a maximum deviation of up to 20% at 600 hPa. Future applications of GPS sounding datasets are discussed.展开更多
Dye-sensitized solar cell (DSSC) is one of the most rapidly developed solar cells in the past 20 years. Many characterization methods have been employed for further understanding the operational details of the photo...Dye-sensitized solar cell (DSSC) is one of the most rapidly developed solar cells in the past 20 years. Many characterization methods have been employed for further understanding the operational details of the photo- electric conversion in DSSC as well as the evaluation of cell performance. Electrochemical methods have become pow- erful tools for studying the charge transfer and interfacial process. In this review, we introduce and explain the various electrochemical methods used to characterize and analyze DSSC, including current-voltage (I-V) scan measurement, cyclic voltammetry, electrochemical impedance spec- troscopy, intensity-modulated photocurrent spectroscopy, and intensity-modulated photovoltage spectroscopy. In ad- dition, some applications were provided as samples to elucidate electron transfer kinetics, energy levels and electrocatalytic activity of the materials used in DSSC.展开更多
文摘Game-tree search plays an important role in the field of Artificial Intelligence (AI). In this paper, we characterize one parallel game-tree search workload in chess: the latest version of Crafty, a state of art program, on two Intel Xeon shared-memory multiprocessor systems. Our analysis shows that Crafty is latency-sensitive and the hash-table and dynamic tree splitting used in Crafty cause large scalability penalties. They consume 35%-50% of the running time on the 4-way system. Furthermore, Crafty is not bandwidth-limited.
基金supported by the National key R & D plan for the 13th five year plan (No. 2017YFC0805200)the Qingdao science and technology plan project (No.19-3-2-6-zhc)+1 种基金the Natural Science Foundation of Shandong Province (No. ZR2019MEE118)the National Natural Science Foundation of China (No. 51974179)。
文摘To relieve dust pollution in open cut coal mines and reduce the hazards of coal dust pollution to the environment and workers we optimized the synthesis of a dust suppressant by graft copolymerization of environmentally friendly soy protein isolate with methyl methacrylate.This dust suppressant could effectively control dust pollution in open cut coal mines. The optimized conditions for graft copolymerization in this case were determined by a response surface experiment designed with Design-Expert 10 software. Characterization by scanning electron microscopy showed a significant morphology change of the dust suppressant and the generation of a rigid and dense layer on its surface after interacting with coal dust.The layer exhibited good bonding and dust suppression performance. The analysis with Fourier-transform infrared spectroscopy revealed the appearance of new absorption peaks near 1300, 1072, and 1631 cm, demonstrating effective graft copolymerization. The proposed dust suppressant exhibited excellent wind erosion resistance, with a resistance that exceeded 90% at a wind speed of 6.5 m/sec. The successful graft copolymerization and effective bonding and curing of the dust suppressant on coal dust were experimentally verified.This is of great significance to the control of coal dust pollution.
基金supported by the Natural National Science Foundation of China (61602377, 61834005, 61772417, 61802304,61874087,61634004)the International Science and Technology Cooperation Program of Shaanxi (2018KW006)
文摘Graphics processing is an increasing important application domain with the demand of real-time rendering,video streaming,virtual reality,and so on.Illumination is a critical module in graphics rendering and is typically compute-bound,memory-bound,and power-bound in different application cases.It is crucial to decide how to schedule different illumination algorithms with different features according to the practical requirements in reconfigurable graphics hardware.This paper analyze the performance characteristics of four main-stream lighting algorithms,Lambert illumination algorithm,Phong illumination algorithm,Blinn-Phong illumination algorithm,and Cook-Torrance illumination algorithm,using hardware performance counters on x86 processor platform KabyLake(KBL).The data movement,computation,power consumption,and memory accessing are evaluated over a range of application scenarios.Further,by analyzing the system-level behavior of these illumination algorithms,obtains the cons and pros of these specific algorithms were obtained.The associated relationship between performance/energy and the evaluated metrics was analyzed through Pearson correlation coefficient(PCC)analysis.According to these performance characterization data,this paper presents some reconfiguration suggestions in reconfigurable graphics processor.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11675019,12105020,and 12075031)the Bud Project of Beijing Academy of Science and Technology(Grant No.BGS202106)the National Key Research and Development Program of China(Grant No.2021YFF0701202)
文摘A method to measure the detailed performance of polycapillary x-ray optics by a pinhole and charge coupled device(CCD)detector was proposed in this study.The pinhole was located between the x-ray source and the polycapillary x-ray optics to determine the illuminating region of the incident x-ray beam on the input side of the optics.The CCD detector placed downstream of the polycapillary x-ray optics ensured that the incident x-ray beam controlled by the pinhole irradiated a specific region of the input surface of the optics.The intensity of the output beam of the polycapillary x-ray optics was obtained from the far-field image of the output beam of the optics captured by CCD detector.As an application example,the focal spot size,gain in power density,transmission efficiency,and beam divergence of different parts of a polycapillary focusing x-ray lenses(PFXRL)were measured by a pinhole and CCD detector.Three pinholes with diameters of 500,1000,and 2000μm were used to adjust the diameter of the incident x-ray beam illuminating the PFXRL from 500μm to the entire surface of the input side of the PFXRL.The focal spot size of the PFXRL,gain in power density,transmission efficiency,and beam divergence ranged from 27.1μm to 34.6μm,400 to 3460,26.70%to 5.38%,and 16.8 mrad to 84.86 mrad,respectively.
文摘A thimble zirconia oxygen sensor electrolyte and their interface were observed with was prepared with YSZ. The surfaces of the Pt electrode, a scanning electron microscope (SEM).The sensor was examined with engine bench test to evaluate the essential performance. The basic function such as electromotive force output and response time was discussed. The oscillograph trace was also obtained and analyzed with four different frequencies. The experimental results reveal that the oxygen sensor has high performances meeting the demands of practical applications..
文摘The electronic modification effect of various metal oxides over Pt-Al;O;catalyst andthe relationships between the polarizing force of cations(PFC)and the electrophiliccharacter(EC)and catalytic performances(CP)of promoted Pt catalyst have been studiecby competitive hydrogenation reaction method(CHRM)and test reaction,i.e.hydrogena-tion of benzene and hydrogenolysis of cyclopentane.
基金This work was supported by the National Natural Science Foundation of China(NSFC 31760187)Yunnan Provincial Reserve Talents for Middle&Young Academic and Technical Leaders(2019HB026)Yunnan Provincial“Ten thousand Talents Project”Youth Tip-Top Talents.
文摘In this study,pre-concentrated bark,furfuryl alcohol and other biomass raw materials were used to prepare foaming materials by high-speed mechanical stirring without using a foaming agent.We investigated the effect of the postadded water amount on the properties of foaming materials.In particular,we determined basic physical properties of these materials,including the limiting oxygen index(LOI),porosity,thermal conductivity,thermogravimetric analysis,pore size distribution,and microstructure.The results of scanning electron microscopy(SEM)indicated that the pore size distribution was uniform and the pore size increased with increasing water volume.Thermogravimetric analysis(TG/DTG)showed that when the temperature reached 410°C,the foam was easily decomposed,the final residual mass was only 2.8%,and water addition had little effect on it.Moreover,the amount of post-added water is 5–30 g,the density and compression strength of the foamed materials gradually decreased,while the degree of pulverization increased.LOI ranged from 26.1%to 30.79%,and porosity ranged from 81%to 83%.The change in water volume greatly affected the foam’s performance,the performance of foamed material deteriorated as the amount of added water increased,but the effect on thermal conductivity was not very obvious.The highest thermal conductivity was only 0.0179 W/(m·K),still providing excellent thermal insulation.
基金supported by funds from the National Key Research and Development Program Global Change and Mitigation Project [grant number 2017YFA0604004]the National Natural Science Foundation of China [grant numbers41675100,91737306 and U1811464]provided by the SCSIO under the project ‘Scientific investigation of the Eastern Indian Ocean in 2018’,funded by the NSFC(NORC2018-10)
文摘It is important to be able to characterize the thermal conditions over the equatorial Indian Ocean for both weather forecasting and climate prediction. This study compared the equatorial eastern Indian Ocean (EEIO) temperature and relative humidity profiles from three reanalysis products (JRA-55, MERRA2, and FGOALS-f2) with shipboard global positioning system (GPS) sounding measurements obtained during the Eastern Indian Ocean Open Cruise in spring 2018. The FGOALS-f2 reanalysis product is based on the initialization module of a sub-seasonal to seasonal prediction system with a nudging-based data assimilation method. The results indicated that:(1) both JRA-55 and MERRA2 were reliable in characterizing the temperature profile from 850 to 600 hPa, with a maximum deviation of about <0.5℃. Both datasets showed a large negative deviation below 825 hPa, with a maximum bias of about 2℃ at 1000 hPa and 1.5℃ at 900 hPa, respectively.(2) JRA-55 showed good performance in characterizing the relative humidity profile above 850 hPa, with a maximum deviation of < 8%, while it showed much wetter conditions below 850 hPa. MERRA2 overestimated the relative humidity in the middle to lower troposphere, with a maximum deviation of about 15% at 925 hPa.(3) The FGOALS-f2 reanalysis product more accurately reproduced the temperature profile in the marine atmospheric boundary layer over the EEIO than that in JRA-55 and MERRA2, but showed much wetter conditions than the GPS sounding observations, with a maximum deviation of up to 20% at 600 hPa. Future applications of GPS sounding datasets are discussed.
基金supported by the National Natural Science Foundation of China(51072170,21321062)the National Basic Research Program of China(2012CB932900)
文摘Dye-sensitized solar cell (DSSC) is one of the most rapidly developed solar cells in the past 20 years. Many characterization methods have been employed for further understanding the operational details of the photo- electric conversion in DSSC as well as the evaluation of cell performance. Electrochemical methods have become pow- erful tools for studying the charge transfer and interfacial process. In this review, we introduce and explain the various electrochemical methods used to characterize and analyze DSSC, including current-voltage (I-V) scan measurement, cyclic voltammetry, electrochemical impedance spec- troscopy, intensity-modulated photocurrent spectroscopy, and intensity-modulated photovoltage spectroscopy. In ad- dition, some applications were provided as samples to elucidate electron transfer kinetics, energy levels and electrocatalytic activity of the materials used in DSSC.