A novel method for analysis of three active components curcumin, demethoxycurcumin and bisdemethoxycurcumin in Curcuma longa L. was developed by HPLC coupled with electrochemical detection. Three curcuminoids were wel...A novel method for analysis of three active components curcumin, demethoxycurcumin and bisdemethoxycurcumin in Curcuma longa L. was developed by HPLC coupled with electrochemical detection. Three curcuminoids were well separated on a C18 column and detected with high sensitivity. A mobile phase containing acetonitrile and 10 mM Na2HPO4-H3PO4 (pH 5.0) (50:50, v/v) was used. Good linearity was obtained in the range of 0.208-41.6, 0.197-39.4, and 0.227-114μM for curcumin, demethoxycurcumin and bisdemethoxycurcumin respectively. The limit of detection reached up to 10 ? 8 M, which was lower than that by UV detection. The relative standard deviations (RSDs) ranged from 1.06%to 1.88%for intra-day precision and from 4.30%to 5.79%for inter-day precision, respectively. The proposed method has been applied in real herb sample and recoveries ranging from 86.3%to 111%were obtained.展开更多
Cooling in industrial production and refrigeration of perishable and</span><span style="font-size:10.0pt;font-family:""> non-</span><span style="font-size:10.0pt;font-family:&q...Cooling in industrial production and refrigeration of perishable and</span><span style="font-size:10.0pt;font-family:""> non-</span><span style="font-size:10.0pt;font-family:""> </span><span style="font-size:10.0pt;font-family:"">perishable products is common practice throughout the world. Research studies have been conducted both experimentally and numerically to simulate Vapor Compression Refrigeration System (VCRS) and its performance respectively, however, experimental procedure often seems to be expensive and time-consuming to carry out due to the function of many variables. This study was therefore designed to numerically simulate the performance assessment of a nanoparticle enhanced VCRS. A numerical model of a vapor compression refrigeration system was developed using standard refrigeration equations on each of the major components of the refrigeration system such as compressor, evaporator, condenser and expansion valve. The model was then simulated on a MATLAB platform with a CoolProp installed packages via Python under two different simulation cases. In the first case, the mass fractions were varied for CuO,</span><span style="font-size:10.0pt;font-family:""> </span><span style="font-size:10.0pt;font-family:"">TiO<sub>2</sub> and Al<sub>2</sub>O<sub>3</sub> nanoparticles while their densities remained constant and a reversed condition was investigated for the second case. The results showed that both the refrigerating effect and the Coefficient Of Performance (COP) of the system increase as both the mass fraction and density of all the nanoparticles increases. It also shows that the compressor work decreases as both the mass fraction and density of all the nanoparticles were increased. On comparing the computational and numerical analysis results, the study established no significant difference in terms of COP and the use of nanoparticles were found to have improved the COP of the system.展开更多
This study evaluates the operational performance of all routes of Sajha Bus Yatayat operating inside Kathmandu valley using Data Envelopment Analysis (DEA) in terms of efficiency and effectiveness score. This approach...This study evaluates the operational performance of all routes of Sajha Bus Yatayat operating inside Kathmandu valley using Data Envelopment Analysis (DEA) in terms of efficiency and effectiveness score. This approach allows us to access the relative performance of transit system in absence of historical data and research to compare with. To explore the possibility of enhancing the performance, scenarios were created for relatively underperforming routes and long route problem by changing the most important input variable and output variables accordingly with regression model where it was relevant. Partial Least Squares (PLS) regression was used to determine the most influential input variables to the output variables. DEA was conducted to access the performance of all routes under these scenarios. Underperforming routes except the longest route under the first set of scenarios, emerge to be better performing efficiently without considerable negative deviation in effectiveness. The result of second set of scenarios for long route problem suggests that the longest route’s performance can be enhanced significantly upon proper route alignment. Scenarios development and evaluation can help lead transit companies to explore the strategies to facilitate operational performance enhancement.展开更多
System-of-systems (SOS) engineering involves a com- plex process of refining high-level SoS requirements into more detailed systems requirements and assessing the extent to which the performances of to-be systems ma...System-of-systems (SOS) engineering involves a com- plex process of refining high-level SoS requirements into more detailed systems requirements and assessing the extent to which the performances of to-be systems may possibly satisfy SoS capa- bility objectives. The key issue is how to model such requirements to automate the process of analysis and assessment. This paper suggests a meta-model that defines both functional and non- functional features of SoS requirements for command and control, communication, computer, intelligence, surveillance reconnais- sance (C41SR) systems. A domain-specific modeling language is defined by extending unified modeling language (UML) con- structed of class and association with fuzzy theory in order to model the fuzzy concepts of performance requirements. An effi- ciency evaluation function is introduced, based on Bezier curves, to predict the effectiveness of systems. An algorithm is presented to transform domain models in fuzzy UML into a requirements ontology in description logic (DL) so that requirements verification can be automated with a popular DL reasoner such as Pellet.展开更多
基金supported by the National Scientific Foundation of China (Grant nos.21375101,90817103,and 30973672)Doctroral Fund of Ministry of Education of China (No.20110141110024)Innovation Seed Fund and Translational Medical Research Fund of Wuhan University School of Medicine
文摘A novel method for analysis of three active components curcumin, demethoxycurcumin and bisdemethoxycurcumin in Curcuma longa L. was developed by HPLC coupled with electrochemical detection. Three curcuminoids were well separated on a C18 column and detected with high sensitivity. A mobile phase containing acetonitrile and 10 mM Na2HPO4-H3PO4 (pH 5.0) (50:50, v/v) was used. Good linearity was obtained in the range of 0.208-41.6, 0.197-39.4, and 0.227-114μM for curcumin, demethoxycurcumin and bisdemethoxycurcumin respectively. The limit of detection reached up to 10 ? 8 M, which was lower than that by UV detection. The relative standard deviations (RSDs) ranged from 1.06%to 1.88%for intra-day precision and from 4.30%to 5.79%for inter-day precision, respectively. The proposed method has been applied in real herb sample and recoveries ranging from 86.3%to 111%were obtained.
文摘Cooling in industrial production and refrigeration of perishable and</span><span style="font-size:10.0pt;font-family:""> non-</span><span style="font-size:10.0pt;font-family:""> </span><span style="font-size:10.0pt;font-family:"">perishable products is common practice throughout the world. Research studies have been conducted both experimentally and numerically to simulate Vapor Compression Refrigeration System (VCRS) and its performance respectively, however, experimental procedure often seems to be expensive and time-consuming to carry out due to the function of many variables. This study was therefore designed to numerically simulate the performance assessment of a nanoparticle enhanced VCRS. A numerical model of a vapor compression refrigeration system was developed using standard refrigeration equations on each of the major components of the refrigeration system such as compressor, evaporator, condenser and expansion valve. The model was then simulated on a MATLAB platform with a CoolProp installed packages via Python under two different simulation cases. In the first case, the mass fractions were varied for CuO,</span><span style="font-size:10.0pt;font-family:""> </span><span style="font-size:10.0pt;font-family:"">TiO<sub>2</sub> and Al<sub>2</sub>O<sub>3</sub> nanoparticles while their densities remained constant and a reversed condition was investigated for the second case. The results showed that both the refrigerating effect and the Coefficient Of Performance (COP) of the system increase as both the mass fraction and density of all the nanoparticles increases. It also shows that the compressor work decreases as both the mass fraction and density of all the nanoparticles were increased. On comparing the computational and numerical analysis results, the study established no significant difference in terms of COP and the use of nanoparticles were found to have improved the COP of the system.
文摘This study evaluates the operational performance of all routes of Sajha Bus Yatayat operating inside Kathmandu valley using Data Envelopment Analysis (DEA) in terms of efficiency and effectiveness score. This approach allows us to access the relative performance of transit system in absence of historical data and research to compare with. To explore the possibility of enhancing the performance, scenarios were created for relatively underperforming routes and long route problem by changing the most important input variable and output variables accordingly with regression model where it was relevant. Partial Least Squares (PLS) regression was used to determine the most influential input variables to the output variables. DEA was conducted to access the performance of all routes under these scenarios. Underperforming routes except the longest route under the first set of scenarios, emerge to be better performing efficiently without considerable negative deviation in effectiveness. The result of second set of scenarios for long route problem suggests that the longest route’s performance can be enhanced significantly upon proper route alignment. Scenarios development and evaluation can help lead transit companies to explore the strategies to facilitate operational performance enhancement.
基金supported by the National Natural Science Foundation of China(61273210)
文摘System-of-systems (SOS) engineering involves a com- plex process of refining high-level SoS requirements into more detailed systems requirements and assessing the extent to which the performances of to-be systems may possibly satisfy SoS capa- bility objectives. The key issue is how to model such requirements to automate the process of analysis and assessment. This paper suggests a meta-model that defines both functional and non- functional features of SoS requirements for command and control, communication, computer, intelligence, surveillance reconnais- sance (C41SR) systems. A domain-specific modeling language is defined by extending unified modeling language (UML) con- structed of class and association with fuzzy theory in order to model the fuzzy concepts of performance requirements. An effi- ciency evaluation function is introduced, based on Bezier curves, to predict the effectiveness of systems. An algorithm is presented to transform domain models in fuzzy UML into a requirements ontology in description logic (DL) so that requirements verification can be automated with a popular DL reasoner such as Pellet.