Lithium-sulfur battery(LSB)has brought much attention and concern because of high theoretical specific capacity and energy density as one of main competitors for next-generation energy storage systems.The widely comme...Lithium-sulfur battery(LSB)has brought much attention and concern because of high theoretical specific capacity and energy density as one of main competitors for next-generation energy storage systems.The widely commercial application and development of LSB is mainly hindered by serious“shuttle effect”of lithium polysulfides(Li PSs),slow reaction kinetics,notorious lithium dendrites,etc.In various structures of LSB materials,array structured materials,possessing the composition of ordered micro units with the same or similar characteristics of each unit,present excellent application potential for various secondary cells due to some merits such as immobilization of active substances,high specific surface area,appropriate pore sizes,easy modification of functional material surface,accommodated huge volume change,enough facilitated transportation for electrons/lithium ions,and special functional groups strongly adsorbing Li PSs.Thus many novel array structured materials are applied to battery for tackling thorny problems mentioned above.In this review,recent progresses and developments on array structured materials applied in LSBs including preparation ways,collaborative structural designs based on array structures,and action mechanism analyses in improving electrochemical performance and safety are summarized.Meanwhile,we also have detailed discussion for array structured materials in LSBs and constructed the structure-function relationships between array structured materials and battery performances.Lastly,some directions and prospects about preparation ways,functional modifications,and practical applications of array structured materials in LSBs are generalized.We hope the review can attract more researchers'attention and bring more studying on array structured materials for other secondary batteries including LSB.展开更多
Non-renewable fossil fuels have led to serious problems such as global warming,environmental pollution,etc.Oxygen electrocatalysis including oxygen reduction reaction(ORR)and oxygen evolution reaction(OER)plays a cent...Non-renewable fossil fuels have led to serious problems such as global warming,environmental pollution,etc.Oxygen electrocatalysis including oxygen reduction reaction(ORR)and oxygen evolution reaction(OER)plays a central role in clean energy conversion,enabling a number of sustainable processes for future air battery technologies.Fluorine,as the most electronegative element(4.0)not only can induce more efficient regulation for the electronic structure,but also can bring more abundant defects and other novel effects in materials selection and preparation for favorable catalysis with respect to the other nonmetal elements.However,an individual and comprehensive overview of fluorine-containing functional materials for oxygen electrocatalysis field is still blank.Therefore,it is very meaningful to review the recent progresses of fluorine-containing oxygen electrocatalysts.In this review,we first systematically summarize the controllable preparation methods and their possible development directions based on fluorine-containing materials from four preparation methods.Due to the strong electron-withdrawing properties of fluorine,its control of the electronic structure can effectively enhance the oxygen electrocatalytic activity of the materials.In addition,the catalytic enhancement effect of fluorine on carbonbased materials also includes the prevent oxidation and the layer peeling,and realizes the precise atomic control.And the catalytic improvement mechanism of fluorine containing metal-based compounds also includes the hydration of metal site,the crystal transformation,and the oxygen vacancy induction.Then,based on their various dimensions(0D–3D),we also have summarized the advantages of different morphologies on oxygen electrocatalytic performances.Finally,the prospects and possible future researching direction of F-containing oxygen electrocatalysts are presented(e.g.,novel pathways,advanced methods for measurement and simulation,field assistance and multi-functions).The review is considered valuable and helpful in exploring the novel designs and mechanism analyses of advanced fluorine-containing electrocatalysts.展开更多
Research of capture mechanisms with strong capture adaptability and stable grasp is important to solve the problem of launch and recovery of torpedo-shaped autonomous underwater vehicles(AUVs).A multi-loop coupling ca...Research of capture mechanisms with strong capture adaptability and stable grasp is important to solve the problem of launch and recovery of torpedo-shaped autonomous underwater vehicles(AUVs).A multi-loop coupling capture mechanism with strong adaptability and high retraction rate has been proposed for the launch and recovery of torpedo-shaped AUVs with different morphological features.Firstly,the principle of capturing motion retraction is described based on the appearance characteristics of torpedo-shaped AUVs,and the configuration synthesis of the capture mechanism is carried out using the method of constrained chain synthesis.Secondly,the screw theory is employed to analyze the degree of freedom(DoF)of the capture mechanism.Then,the 3D model of the capture mechanism is established,and the kinematics and dynamics simulations are carried out.Combined with the capture orientation requirements of the capture mechanism,the statics and vibration characteristics analyses are carried out.Furthermore,considering the capture process and the underwater working environment,the motion characteristics and hydraulics characteristics of the capture mechanism are analyzed.Finally,a principle prototype is developed and the torpedo-shaped AUVs capture experiment is completed.The work provides technical reserves for the research and development of AUV capture special equipment.展开更多
New research and development(R&D)institutions are an important part of the national innovation system,playing an important role in promoting the transformation of scientific and technological achievements.In recen...New research and development(R&D)institutions are an important part of the national innovation system,playing an important role in promoting the transformation of scientific and technological achievements.In recent years,new R&D institutions have gradually become the driving force of innovation-driven development in China.Taking new R&D institutions in Zhejiang Province as the research object,this paper studies the internal talent training path and performance evaluation mechanism of new R&D institutions in Zhejiang Province by using the literature research method,comparison method,case verification method,and other methods.The investigation results show that there are problems such as lack of material and spiritual support and neglect of the absorption of local talents in the internal talent training,and there are problems such as unclear standards,insufficient data,and opaque processes in the performance evaluation mechanism,which greatly affect the establishment and improvement of the performance evaluation mechanism.Given the above problems,this paper puts forward a forward-looking,oriented,flexible,and compatible talent training path and performance evaluation mechanism,hoping to optimize the effective internal talent training path of new R&D institutions,improve the evaluation performance,and promote healthy development of new R&D institutions in Zhejiang Province.展开更多
In traditional Chinese medicine(TCM),based on various pathogenic symptoms and the‘golden chamber’medical text,Huangdi Neijing,diabetes mellitus falls under the category‘collateral disease’.TCM,with its wealth of e...In traditional Chinese medicine(TCM),based on various pathogenic symptoms and the‘golden chamber’medical text,Huangdi Neijing,diabetes mellitus falls under the category‘collateral disease’.TCM,with its wealth of experience,has been treating diabetes for over two millennia.Different antidiabetic Chinese herbal medicines re-duce blood sugar,with their effective ingredients exerting unique advantages.As well as a glucose lowering effect,TCM also regulates bodily functions to prevent diabetes associated complications,with reduced side effects compared to western synthetic drugs.Chinese herbal medicine is usually composed of polysaccharides,saponins,al-kaloids,flavonoids,and terpenoids.These active ingredients reduce blood sugar via various mechanism of actions that include boosting endogenous insulin secretion,enhancing insulin sensitivity and adjusting key enzyme activity and scavenging free radicals.These actions regulate glycolipid metabolism in the body,eventually achiev-ing the goal of normalizing blood glucose.Using different animal models,a number of molecular markers are available for the detection of diabetes induction and the molecular pathology of the disease is becoming clearer.Nonetheless,there is a dearth of scientific data about the pharmacology,dose-effect relationship,and structure-activity relationship of TCM and its constituents.Further research into the efficacy,toxicity and mode of action of TCM,using different metabolic and molecular markers,is key to developing novel TCM antidiabetic formulations.展开更多
Potassium-ion batteries(PIBs)are potential“Beyond Li-ion Batteries”candidates for their resource advantage and low standard electrode potential.To date,the research on PIBs is in its early stages,the most urgent tas...Potassium-ion batteries(PIBs)are potential“Beyond Li-ion Batteries”candidates for their resource advantage and low standard electrode potential.To date,the research on PIBs is in its early stages,the most urgent task is to develop high-performance electrode materials and reveal their potassium storage mechanism.For PIBs anode materials,carbon with tunable microstructure,excellent electrochemical activity,nontoxicity and low price is considered as one of the most promising anode materials for commercialization.Although some breakthrough works have emerged,the overall electrochemical performance of the reported carbon anode is still far away from practical application.Herein,we carry out a comprehensive overview of PIBs carbon anode in terms of three aspects of rational design of structure,performance evaluation criteria and characterization of potassium storage mechanism.First,the regulation mechanism of key structural features of carbon anode on its potassium storage performance and the representative structural regulation strategies are introduced.Then,in view of the undefined performance evaluation criteria of PIBs carbon anode,a reference principle for evaluating the potassium storage performance of carbon anode is proposed.Finally,the advanced characterization techniques for the potassium storage mechanism of carbon anode are summarize.This review aims to provide guidance for the development of practical PIBs anode.展开更多
In recent years,with the improvement of the requirements of road performance,modified emulsified asphalts with better performance has gradually replaced the emulsified asphalt and become the primary material for road ...In recent years,with the improvement of the requirements of road performance,modified emulsified asphalts with better performance has gradually replaced the emulsified asphalt and become the primary material for road maintenance.This paper introduces the modified emulsified asphalt materials commonly used in pavement maintenance projects,definitions and modified mechanisms of polymerized styrene butadiene rubber(SBR)modified emulsified asphalt,styrene butadiene styrene block polymer(SBS)modified emulsified asphalt and waterborne epoxy resin(WER)modified emulsified asphalt are summarized.The analysis focused on comparing the effects of modifiers,preparation process,auxiliary additives,and other factors on the performance of modified emulsified asphalt.In this paper,it is considered that the greatest impact on the performance of emulsified asphalt is the modifier,emulsifier mainly affects the speed of breaking the emulsion,stabilizers on the basic performance of emulsified asphalt evaporative residue is small;and when the modifier is distributed in the asphalt in a network,the dosage at this time is the recommended optimum dosage.Finally,this study recommends that in the future,the polymer-asphalt compatibility can be improved through composite modification,chemical grafting and other methods to continue to develop broader applicability and better performance of modified emulsified asphalt.展开更多
Aiming at the problem that the existing ankle rehabilitation robot is difficult to fully fit the complex motion of human ankle joint and has poor human-machine motion compatibility,an equivalent series mechanism model...Aiming at the problem that the existing ankle rehabilitation robot is difficult to fully fit the complex motion of human ankle joint and has poor human-machine motion compatibility,an equivalent series mechanism model that is highly matched with the actual bone structure of the human ankle joint is proposed and mapped into a parallel rehabilita-tion mechanism.The parallel rehabilitation mechanism has two virtual motion centers(VMCs),which can simulate the complex motion of the ankle joint,adapt to the individual differences of various patients,and can meet the reha-bilitation needs of both left and right feet of patients.Firstly,based on the motion properties and physiological structure of the human ankle joint,the mapping relationship between the rehabilitation mechanism and ankle joint is determined,and the series equivalent model of the ankle joint is established.According to the kinematic and con-straint properties of the ankle equivalent model,the configuration design of the parallel ankle rehabilitation robot is carried out.Secondly,according to the intersecting motion planes theory,the full-cycle mobility of the mechanism is proved,and the continuous axis of the mechanism is judged based on the constraint power and its derivative.Then,the kinematics of the parallel ankle rehabilitation robot is analyzed.Finally,based on the OpenSim biomechanical soft-ware,a human-machine coupling rehabilitation simulation model is established to evaluate the rehabilitation effect,which lays the foundation for the formulation of a rehabilitation strategy for the later prototype.展开更多
IEEE 802.11ah is a new Wi-Fi standard for sub-1Ghz communications,aiming to address the challenges of the Internet of Things(IoT).Significant changes in the legacy 802.11 standards have been proposed to improve the ne...IEEE 802.11ah is a new Wi-Fi standard for sub-1Ghz communications,aiming to address the challenges of the Internet of Things(IoT).Significant changes in the legacy 802.11 standards have been proposed to improve the network performance in high contention scenarios,the most important of which is the Restricted Access Window(RAW)mechanism.This mechanism promises to increase the throughput and energy efficiency by dividing stations into different groups.Under this scheme,only the stations belonging to the same group may access the channel,which reduces the collision probability in dense scenarios.However,the standard does not define the RAW grouping strategy.In this paper,we develop a new mathematical model based on the renewal theory,which allows for tracking the number of transmissions within the limited RAW slot contention period defined by the standard.We then analyze and evaluate the performance of RAW mechanism.We also introduce a grouping scheme to organize the stations and channel access time into different groups within the RAW.Furthermore,we propose an algorithm to derive the RAW configuration parameters of a throughput maximizing grouping scheme.We additionally explore the impact of channel errors on the contention within the time-limited RAW slot and the overall RAW optimal configuration.The presented analytical framework can be applied to many other Wi-Fi standards that integrate periodic channel reservations.Extensive simulations using the MATLAB software validate the analytical model and prove the effectiveness of the proposed RAW configuration scheme.展开更多
One dimensional(1D) and three dimensional(3D) ultrasound sources were applied to the solidification process of Mg_(71.5)Zn_(26.1)Y_(2.4) alloy.The acoustic spectra were in-situ measured, based on which the cavitation ...One dimensional(1D) and three dimensional(3D) ultrasound sources were applied to the solidification process of Mg_(71.5)Zn_(26.1)Y_(2.4) alloy.The acoustic spectra were in-situ measured, based on which the cavitation intensities and dynamic solidification mechanism were further investigated. With the increase of ultrasonic dimension and amplitude, the primary Mg_(3)Zn_(6)Y phase was significantly refined from petals to nearly pentagonal shape. The sound field measurements showed that the transient cavitation played a decisive role in generating a high local undercooling, which facilitated the formation of icosahedral clusters and promoted the nucleation of primary Mg_(3)Zn_(6)Y phase. The morphological transition of(α-Mg+Mg_(3)Zn_(6)Y) eutectic from lamellar to anomalous structure occurred under 3D ultrasonic condition. The stable cavitation took the main responsibility because the high pressure excited by nonlinearly oscillating bubbles induced the preferential nucleation of α-Mg phase rather than Mg_(3)Zn_(6)Y phase. As compared with its static values, the tensile strength and compression plasticity of this alloy were increased by the factors of 1.9 and 2.1, and its corrosion resistance was also improved with the corrosion current density decreased by one order of magnitude.展开更多
We developed ultra-high performance concrete(UHPC)incorporating mullite sand and brown corundum sand(BCS),and the quartz sand UHPC was utilized to prepare for comparison.The properties of compressive strength,elastic ...We developed ultra-high performance concrete(UHPC)incorporating mullite sand and brown corundum sand(BCS),and the quartz sand UHPC was utilized to prepare for comparison.The properties of compressive strength,elastic modulus,ultrasonic pulse velocity,flexural strength,and toughness were investigated.Scanning electron microscopy and nanoindentation were also conducted to reveal the underlying mechanisms affecting macroscopic performance.Due to the superior interface bonding properties between mullite sand and matrix,the compressive strength and flexural toughness of UHPC have been significantly improved.Mullite sand and BCS aggregates have higher stiffness than quartz sand,contributing to the excellent elastic modulus exhibited by UHPC.The stiffness and volume of aggregates have a more significant impact on the elastic modulus of UHPC than interface performance,and the latter contributes more to the strength of UHPC.This study will provide a reference for developing UHPC with superior elastic modulus for structural engineering.展开更多
Alloying seriously deteriorates the thermal conductivity of magnesium(Mg)alloys,thus,restricts their applications in the fields of computer,communication,and consumer products.In order to improve the thermal conductiv...Alloying seriously deteriorates the thermal conductivity of magnesium(Mg)alloys,thus,restricts their applications in the fields of computer,communication,and consumer products.In order to improve the thermal conductivity of Mg alloys,adding carbon nanotube(CNT)combined with aging treatment is proposed in this work,i.e.fabricating the D-CNT(a kind of dispersed CNT)reinforced ZK61 matrix composite via powder metallurgy,and conducting aging treatment to the composite.Results indicate the as-aged ZK61/0.6 wt.%D-CNT composite achieved an excellent thermal conductivity of 166 W/(mK),exhibiting 52.3%enhancement in comparison with matrix,as well as tensile yield strength of 321 MPa,ultimate tensile strength of 354 of MPa,and elongation of 14%.The simultaneously enhanced thermal conductivity and mechanical performance are mainly attributed to:(1)the embedded interface of the D-CNT with matrix and(2)the coherent interface of precipitates with matrix.It is expected the current work can provide a clue for devising Mg matrix composites with integrated structural and functional performances,and enlarge the current restricted applications of Mg alloys.展开更多
NiO,an anodic electrochromic material,has applications in energy-saving windows,intelligent displays,and military camouflage.However,its electrochromic mechanism and reasons for its performance degradation in alkaline...NiO,an anodic electrochromic material,has applications in energy-saving windows,intelligent displays,and military camouflage.However,its electrochromic mechanism and reasons for its performance degradation in alkaline aqueous electrolytes are complex and poorly understood,making it challenging to improve NiO thin films.We studied the phases and electrochemical characteristics of NiO films in different states(initial,colored,bleached and after 8000 cycles)and identified three main reasons for performance degradation.First,Ni(OH)_(2)is generated during electrochromic cycling and deposited on the NiO film surface,gradually yielding a NiO@Ni(OH)_(2)core-shell structure,isolating the internal NiO film from the electrolyte,and preventing ion transfer.Second,the core-shell structure causes the mode of electrical conduction to change from first-to second-order conduction,reducing the efficiency of ion transfer to the surface Ni(OH)_(2)layer.Third,Ni(OH)_(2)and NiOOH,which have similar crystal structures but different b-axis lattice parameters,are formed during electrochromic cycling,and large volume changes in the unit cell reduce the structural stability of the thin film.Finally,we clarified the mechanism of electrochromic performance degradation of NiO films in alkaline aqueous electrolytes and provide a route to activation of NiO films,which will promote the development of electrochromic technology.展开更多
In challenging operational environments,Lithium-ion batteries(LIBs)inevitably experience mechanical stresses,including impacts and extrusion,which can lead to battery damage,failure,and even the occurrence of fire and...In challenging operational environments,Lithium-ion batteries(LIBs)inevitably experience mechanical stresses,including impacts and extrusion,which can lead to battery damage,failure,and even the occurrence of fire and explosion incidents.Consequently,it is imperative to investigate the safety performance of LIBs under mechanical loads.This study is grounded in a more realistic coupling scenario consisting of electrochemical cycling and low-velocity impact.We systematically and experimentally uncovered the mechanical,electrochemical,and thermal responses,damage behavior,and corresponding mechanisms under various conditions.Our study demonstrates that higher impact energy results in increased structural stiffness,maximum temperature,and maximum voltage drop.Furthermore,heightened impact energy significantly influences the electrical resistance parameters within the internal resistance.We also examined the effects of State of Charge(SOC)and C-rates.The methodology and experimental findings will offer insights for enhancing the safety design,conducting risk assessments,and enabling the cascading utilization of energy storage systems based on LIBs.展开更多
Corporations actively fulfilling corporate social responsibility(CSR)is of more significance to society's sustainable development nowadays.This research discusses the interaction between CSR and corporate performa...Corporations actively fulfilling corporate social responsibility(CSR)is of more significance to society's sustainable development nowadays.This research discusses the interaction between CSR and corporate performance and then adopts other mediation variables to explain the underlying mechanism.The empirical analyses are performed on a sample of 201 listed Chinese firms.The result shows that CSR has a weak negative impact on corporate perfbnnance while being positively influenced by corporate performance significantly.Further study finds the reason may be CSR requires financial support,but has little to do with increasing shareholder wealth.展开更多
Based on Mongolian medical theory and modern pharmacology,literature on the main components and action mechanism of Hatageqi-7 in the treatment of recurrent aphthous ulcer is collected,sorted and summarized.The resear...Based on Mongolian medical theory and modern pharmacology,literature on the main components and action mechanism of Hatageqi-7 in the treatment of recurrent aphthous ulcer is collected,sorted and summarized.The research hopes to provide certain basis for its clinical efficacy from theory.展开更多
Culture is the core of education and the proper meaning of education. Exploring the realization path and function mechanism of school culture education is a major task for educators at present and in the future. Then,...Culture is the core of education and the proper meaning of education. Exploring the realization path and function mechanism of school culture education is a major task for educators at present and in the future. Then, the current academic research started late, had few achievements and was relatively broad and weak. The article believes that the mechanism of school culture educating people includes three fields: “cultural field”, “cultivation field” and “education field”. School teachers and students should be guided to make cultural choices, consciously transform school culture into personal culture, and achieve the purpose of school culture educating people.展开更多
Polyphenols are a class of chemical components that are beneficial to human health.Polyphenol compounds provide advanced biomedical applications due to their antioxidant and anti-inflammatory activity.They can also pl...Polyphenols are a class of chemical components that are beneficial to human health.Polyphenol compounds provide advanced biomedical applications due to their antioxidant and anti-inflammatory activity.They can also play a role in reducing the risk of various chronic diseases.However,most polyphenols are unstable compounds with low absorption and poor bioavailability which greatly limited their applications.Therefore,the delivery of polyphenols to specific parts of the body has become a therapeutic necessity.In this study,the research of polyphenol delivery systems such as microspheres,nanoparticles,liposomes and gels were mainly summarized.The action mechanism of polyphenols to intestinal microbiota,tumor cells,the brain,pancreas,and liver was analyzed.展开更多
The presence of toxic elements in manganese slag(MSG)poses a threat to the environment due to potential pollution.Utilizing CO_(2) curing on MS offers a promising approach to immobilize toxic substances within this ma...The presence of toxic elements in manganese slag(MSG)poses a threat to the environment due to potential pollution.Utilizing CO_(2) curing on MS offers a promising approach to immobilize toxic substances within this material,thereby mitigating their release into the natural surroundings.This study investigates the impact of CO_(2) cured MS on various rheological parameters,including slump flow,plastic viscosity(η),and yield shear stress(τ).Additionally,it assesses flexural and compressive strengths(f_(t) and f_(cu)),drying shrinkage rates(DSR),durability indicators(chloride ion migration coefficient(CMC),carbonization depth(CD)),and the leaching behavior of heavy metal elements.Microscopic examination via scanning electron microscopy(SEM)is employed to elucidate the underlying mechanisms.The results indicate that CO_(2) curing significantly enhances the slump flow of ultra-high performance concrete(UHPC)by up to 51.2%.Moreover,it reduces UHPC’sηandτby rates ranging from 0%to 52.7%and 0%to 40.2%,respectively.The DSR exhibits a linear increase corresponding to the mass ratio of CO_(2) cured MS.Furthermore,CO_(2) curing enhances both f_(t) and f_(cu) of UHPC by up to 28.7%and 17.6%,respectively.The electrical resistance is also improved,showing an increase of up to 53.7%.The relationship between mechanical strengths and electrical resistance follows a cubic relationship.The CO_(2) cured MS demonstrates a notable decrease in the CMC and CD by rates ranging from 0%to 52.6%and 0%to 26.1%,respectively.The reductions of leached chromium(Cr)and manganese(Mn)are up to 576.3%and 1312.7%,respectively.Overall,CO_(2) curing also enhances the compactness of UHPC,thereby demonstrating its potential to improve both mechanical and durability properties.展开更多
As the world transitions to green energy, there is a growing focus among many researchers on the requirement for high-efficient and safe batteries. Solid-state lithium metal batteries(SSLMBs) have emerged as a promisi...As the world transitions to green energy, there is a growing focus among many researchers on the requirement for high-efficient and safe batteries. Solid-state lithium metal batteries(SSLMBs) have emerged as a promising alternative to traditional liquid lithium-ion batteries(LIBs), offering higher energy density, enhanced safety, and longer lifespan. The rise of SSLMBs has brought about a transformation in energy storage, with aluminum(Al)-based material dopants playing a crucial role in advancing the next generation of batteries. The review highlights the significance of Al-based material dopants in SSLMBs applications, particularly its contributions to solid-state electrolytes(SSEs), cathodes, anodes,and other components of SSLMBs. Some studies have also shown that Al-based material dopants effectively enhance SSE ion conductivity, stabilize electrode and SSE interfaces, and suppress lithium dendrite growth, thereby enhancing the electrochemical performance of SSLMBs. Despite the above mentioned progresses, there are still problems and challenges need to be addressed. The review offers a comprehensive insight into the important role of Al in SSLMBs and addresses some of the issues related to its applications, endowing valuable support for the practical implementation of SSLMBs.展开更多
基金This work was supported by the National Natural Science Foundation of China(52203066,51973157,61904123)the Tianjin Natural Science Foundation(18JCQNJC02900)+3 种基金the National innovation and entrepreneurship training program for college students(202310058007)the Tianjin Municipal college students’innovation and entrepreneurship training program(202310058088)the Science&Technology Development Fund of Tianjin Education Commission for Higher Education(Grant No.2018KJ196)the State Key Laboratory of Membrane and Membrane Separation,Tiangong University.
文摘Lithium-sulfur battery(LSB)has brought much attention and concern because of high theoretical specific capacity and energy density as one of main competitors for next-generation energy storage systems.The widely commercial application and development of LSB is mainly hindered by serious“shuttle effect”of lithium polysulfides(Li PSs),slow reaction kinetics,notorious lithium dendrites,etc.In various structures of LSB materials,array structured materials,possessing the composition of ordered micro units with the same or similar characteristics of each unit,present excellent application potential for various secondary cells due to some merits such as immobilization of active substances,high specific surface area,appropriate pore sizes,easy modification of functional material surface,accommodated huge volume change,enough facilitated transportation for electrons/lithium ions,and special functional groups strongly adsorbing Li PSs.Thus many novel array structured materials are applied to battery for tackling thorny problems mentioned above.In this review,recent progresses and developments on array structured materials applied in LSBs including preparation ways,collaborative structural designs based on array structures,and action mechanism analyses in improving electrochemical performance and safety are summarized.Meanwhile,we also have detailed discussion for array structured materials in LSBs and constructed the structure-function relationships between array structured materials and battery performances.Lastly,some directions and prospects about preparation ways,functional modifications,and practical applications of array structured materials in LSBs are generalized.We hope the review can attract more researchers'attention and bring more studying on array structured materials for other secondary batteries including LSB.
基金supported by the National Natural Science Foundation of China,China(52203066,51973157,51673148 and 51678411)the Science and Technology Plans of Tianjin,China(19PTSYJC00010)+3 种基金China Postdoctoral Science Foundation Grant,China(2019M651047)the Tianjin Research Innovation Project for Postgraduate Students,China(2020YJSB062)the Tianjin Municipal College Student’Innovation And Entrepreneurship Training Program,China(202110058052)the National Innovation and Entrepreneurship Training Program for College Students,China(202110058017)。
文摘Non-renewable fossil fuels have led to serious problems such as global warming,environmental pollution,etc.Oxygen electrocatalysis including oxygen reduction reaction(ORR)and oxygen evolution reaction(OER)plays a central role in clean energy conversion,enabling a number of sustainable processes for future air battery technologies.Fluorine,as the most electronegative element(4.0)not only can induce more efficient regulation for the electronic structure,but also can bring more abundant defects and other novel effects in materials selection and preparation for favorable catalysis with respect to the other nonmetal elements.However,an individual and comprehensive overview of fluorine-containing functional materials for oxygen electrocatalysis field is still blank.Therefore,it is very meaningful to review the recent progresses of fluorine-containing oxygen electrocatalysts.In this review,we first systematically summarize the controllable preparation methods and their possible development directions based on fluorine-containing materials from four preparation methods.Due to the strong electron-withdrawing properties of fluorine,its control of the electronic structure can effectively enhance the oxygen electrocatalytic activity of the materials.In addition,the catalytic enhancement effect of fluorine on carbonbased materials also includes the prevent oxidation and the layer peeling,and realizes the precise atomic control.And the catalytic improvement mechanism of fluorine containing metal-based compounds also includes the hydration of metal site,the crystal transformation,and the oxygen vacancy induction.Then,based on their various dimensions(0D–3D),we also have summarized the advantages of different morphologies on oxygen electrocatalytic performances.Finally,the prospects and possible future researching direction of F-containing oxygen electrocatalysts are presented(e.g.,novel pathways,advanced methods for measurement and simulation,field assistance and multi-functions).The review is considered valuable and helpful in exploring the novel designs and mechanism analyses of advanced fluorine-containing electrocatalysts.
基金supported by the Natural Science Foundation of Jiangsu Province of China(Grant No.BK20220649)the Natural Science Foundation of the Jiangsu Higher Education Institutions(Grant No.23KJB460010)+1 种基金the Key R&D Program of Jiangsu Province(Grant No.BE2022062)Postgraduate Research&Practice Innovation Program of Jiangsu Province(Grant No.SJCX23_2143).
文摘Research of capture mechanisms with strong capture adaptability and stable grasp is important to solve the problem of launch and recovery of torpedo-shaped autonomous underwater vehicles(AUVs).A multi-loop coupling capture mechanism with strong adaptability and high retraction rate has been proposed for the launch and recovery of torpedo-shaped AUVs with different morphological features.Firstly,the principle of capturing motion retraction is described based on the appearance characteristics of torpedo-shaped AUVs,and the configuration synthesis of the capture mechanism is carried out using the method of constrained chain synthesis.Secondly,the screw theory is employed to analyze the degree of freedom(DoF)of the capture mechanism.Then,the 3D model of the capture mechanism is established,and the kinematics and dynamics simulations are carried out.Combined with the capture orientation requirements of the capture mechanism,the statics and vibration characteristics analyses are carried out.Furthermore,considering the capture process and the underwater working environment,the motion characteristics and hydraulics characteristics of the capture mechanism are analyzed.Finally,a principle prototype is developed and the torpedo-shaped AUVs capture experiment is completed.The work provides technical reserves for the research and development of AUV capture special equipment.
文摘New research and development(R&D)institutions are an important part of the national innovation system,playing an important role in promoting the transformation of scientific and technological achievements.In recent years,new R&D institutions have gradually become the driving force of innovation-driven development in China.Taking new R&D institutions in Zhejiang Province as the research object,this paper studies the internal talent training path and performance evaluation mechanism of new R&D institutions in Zhejiang Province by using the literature research method,comparison method,case verification method,and other methods.The investigation results show that there are problems such as lack of material and spiritual support and neglect of the absorption of local talents in the internal talent training,and there are problems such as unclear standards,insufficient data,and opaque processes in the performance evaluation mechanism,which greatly affect the establishment and improvement of the performance evaluation mechanism.Given the above problems,this paper puts forward a forward-looking,oriented,flexible,and compatible talent training path and performance evaluation mechanism,hoping to optimize the effective internal talent training path of new R&D institutions,improve the evaluation performance,and promote healthy development of new R&D institutions in Zhejiang Province.
基金the National Key Research and Development Program of China,Grant/Award Number:2021YFD1600100 and 2022YFD1600303。
文摘In traditional Chinese medicine(TCM),based on various pathogenic symptoms and the‘golden chamber’medical text,Huangdi Neijing,diabetes mellitus falls under the category‘collateral disease’.TCM,with its wealth of experience,has been treating diabetes for over two millennia.Different antidiabetic Chinese herbal medicines re-duce blood sugar,with their effective ingredients exerting unique advantages.As well as a glucose lowering effect,TCM also regulates bodily functions to prevent diabetes associated complications,with reduced side effects compared to western synthetic drugs.Chinese herbal medicine is usually composed of polysaccharides,saponins,al-kaloids,flavonoids,and terpenoids.These active ingredients reduce blood sugar via various mechanism of actions that include boosting endogenous insulin secretion,enhancing insulin sensitivity and adjusting key enzyme activity and scavenging free radicals.These actions regulate glycolipid metabolism in the body,eventually achiev-ing the goal of normalizing blood glucose.Using different animal models,a number of molecular markers are available for the detection of diabetes induction and the molecular pathology of the disease is becoming clearer.Nonetheless,there is a dearth of scientific data about the pharmacology,dose-effect relationship,and structure-activity relationship of TCM and its constituents.Further research into the efficacy,toxicity and mode of action of TCM,using different metabolic and molecular markers,is key to developing novel TCM antidiabetic formulations.
基金supported financially by the National Key Research and Development Program of China (Grants No. 2017YFA0206301)the National Natural Science Foundation of China (Grants No. 51631001 and 51631001)the China-Germany Collaboration Project (Grants No. M-0199)
文摘Potassium-ion batteries(PIBs)are potential“Beyond Li-ion Batteries”candidates for their resource advantage and low standard electrode potential.To date,the research on PIBs is in its early stages,the most urgent task is to develop high-performance electrode materials and reveal their potassium storage mechanism.For PIBs anode materials,carbon with tunable microstructure,excellent electrochemical activity,nontoxicity and low price is considered as one of the most promising anode materials for commercialization.Although some breakthrough works have emerged,the overall electrochemical performance of the reported carbon anode is still far away from practical application.Herein,we carry out a comprehensive overview of PIBs carbon anode in terms of three aspects of rational design of structure,performance evaluation criteria and characterization of potassium storage mechanism.First,the regulation mechanism of key structural features of carbon anode on its potassium storage performance and the representative structural regulation strategies are introduced.Then,in view of the undefined performance evaluation criteria of PIBs carbon anode,a reference principle for evaluating the potassium storage performance of carbon anode is proposed.Finally,the advanced characterization techniques for the potassium storage mechanism of carbon anode are summarize.This review aims to provide guidance for the development of practical PIBs anode.
基金The authors acknowledge the financial support from National Natural Science Foundation of China(No.51968006).
文摘In recent years,with the improvement of the requirements of road performance,modified emulsified asphalts with better performance has gradually replaced the emulsified asphalt and become the primary material for road maintenance.This paper introduces the modified emulsified asphalt materials commonly used in pavement maintenance projects,definitions and modified mechanisms of polymerized styrene butadiene rubber(SBR)modified emulsified asphalt,styrene butadiene styrene block polymer(SBS)modified emulsified asphalt and waterborne epoxy resin(WER)modified emulsified asphalt are summarized.The analysis focused on comparing the effects of modifiers,preparation process,auxiliary additives,and other factors on the performance of modified emulsified asphalt.In this paper,it is considered that the greatest impact on the performance of emulsified asphalt is the modifier,emulsifier mainly affects the speed of breaking the emulsion,stabilizers on the basic performance of emulsified asphalt evaporative residue is small;and when the modifier is distributed in the asphalt in a network,the dosage at this time is the recommended optimum dosage.Finally,this study recommends that in the future,the polymer-asphalt compatibility can be improved through composite modification,chemical grafting and other methods to continue to develop broader applicability and better performance of modified emulsified asphalt.
基金Supported by National Natural Science Foundation of China(Grant No.52075145)S&T Program of Hebei Province of China(Grant No.20281805Z)+1 种基金Hebei Provincial Natural Science Foundation of China(Grant No.E2022202130)Central Government Guides Basic Research Projects of Local Science and Technology Development Funds of China(Grant No.206Z1801G).
文摘Aiming at the problem that the existing ankle rehabilitation robot is difficult to fully fit the complex motion of human ankle joint and has poor human-machine motion compatibility,an equivalent series mechanism model that is highly matched with the actual bone structure of the human ankle joint is proposed and mapped into a parallel rehabilita-tion mechanism.The parallel rehabilitation mechanism has two virtual motion centers(VMCs),which can simulate the complex motion of the ankle joint,adapt to the individual differences of various patients,and can meet the reha-bilitation needs of both left and right feet of patients.Firstly,based on the motion properties and physiological structure of the human ankle joint,the mapping relationship between the rehabilitation mechanism and ankle joint is determined,and the series equivalent model of the ankle joint is established.According to the kinematic and con-straint properties of the ankle equivalent model,the configuration design of the parallel ankle rehabilitation robot is carried out.Secondly,according to the intersecting motion planes theory,the full-cycle mobility of the mechanism is proved,and the continuous axis of the mechanism is judged based on the constraint power and its derivative.Then,the kinematics of the parallel ankle rehabilitation robot is analyzed.Finally,based on the OpenSim biomechanical soft-ware,a human-machine coupling rehabilitation simulation model is established to evaluate the rehabilitation effect,which lays the foundation for the formulation of a rehabilitation strategy for the later prototype.
基金supported by the Spanish Ministry of Science,Education and Universities,the European Regional Development Fund and the State Research Agency,Grant No.RTI2018-098156-B-C52.
文摘IEEE 802.11ah is a new Wi-Fi standard for sub-1Ghz communications,aiming to address the challenges of the Internet of Things(IoT).Significant changes in the legacy 802.11 standards have been proposed to improve the network performance in high contention scenarios,the most important of which is the Restricted Access Window(RAW)mechanism.This mechanism promises to increase the throughput and energy efficiency by dividing stations into different groups.Under this scheme,only the stations belonging to the same group may access the channel,which reduces the collision probability in dense scenarios.However,the standard does not define the RAW grouping strategy.In this paper,we develop a new mathematical model based on the renewal theory,which allows for tracking the number of transmissions within the limited RAW slot contention period defined by the standard.We then analyze and evaluate the performance of RAW mechanism.We also introduce a grouping scheme to organize the stations and channel access time into different groups within the RAW.Furthermore,we propose an algorithm to derive the RAW configuration parameters of a throughput maximizing grouping scheme.We additionally explore the impact of channel errors on the contention within the time-limited RAW slot and the overall RAW optimal configuration.The presented analytical framework can be applied to many other Wi-Fi standards that integrate periodic channel reservations.Extensive simulations using the MATLAB software validate the analytical model and prove the effectiveness of the proposed RAW configuration scheme.
基金financially supported by National Natural Science Foundation of China (nos.52088101 and 52130405)Basic Research Project of Shaanxi Natural Science Foundation (no: 2021JCW-09 and 2023-JC-JQ-28)Key R&D Plan of Shaanxi Province-Key Industrial Innovation Chain Project (no: 2020ZDLGY13-03)。
文摘One dimensional(1D) and three dimensional(3D) ultrasound sources were applied to the solidification process of Mg_(71.5)Zn_(26.1)Y_(2.4) alloy.The acoustic spectra were in-situ measured, based on which the cavitation intensities and dynamic solidification mechanism were further investigated. With the increase of ultrasonic dimension and amplitude, the primary Mg_(3)Zn_(6)Y phase was significantly refined from petals to nearly pentagonal shape. The sound field measurements showed that the transient cavitation played a decisive role in generating a high local undercooling, which facilitated the formation of icosahedral clusters and promoted the nucleation of primary Mg_(3)Zn_(6)Y phase. The morphological transition of(α-Mg+Mg_(3)Zn_(6)Y) eutectic from lamellar to anomalous structure occurred under 3D ultrasonic condition. The stable cavitation took the main responsibility because the high pressure excited by nonlinearly oscillating bubbles induced the preferential nucleation of α-Mg phase rather than Mg_(3)Zn_(6)Y phase. As compared with its static values, the tensile strength and compression plasticity of this alloy were increased by the factors of 1.9 and 2.1, and its corrosion resistance was also improved with the corrosion current density decreased by one order of magnitude.
基金Funed by the National Natural Science Foundation of China(No.U21A20149)the Ecological Environment Scientific Research Project of Anhui Province(No.2023hb0014)+2 种基金the Research Reserve of Anhui Jianzhu University(No.2022XMK01)the Excellent Scientific Research and Innovation Team in Colleges and Universities of Anhui Province(No.2022AH010017)Research on the preparation technology of self compacting concrete with strength grade C100.
文摘We developed ultra-high performance concrete(UHPC)incorporating mullite sand and brown corundum sand(BCS),and the quartz sand UHPC was utilized to prepare for comparison.The properties of compressive strength,elastic modulus,ultrasonic pulse velocity,flexural strength,and toughness were investigated.Scanning electron microscopy and nanoindentation were also conducted to reveal the underlying mechanisms affecting macroscopic performance.Due to the superior interface bonding properties between mullite sand and matrix,the compressive strength and flexural toughness of UHPC have been significantly improved.Mullite sand and BCS aggregates have higher stiffness than quartz sand,contributing to the excellent elastic modulus exhibited by UHPC.The stiffness and volume of aggregates have a more significant impact on the elastic modulus of UHPC than interface performance,and the latter contributes more to the strength of UHPC.This study will provide a reference for developing UHPC with superior elastic modulus for structural engineering.
基金supported by National Key Research and Development Program of China(No.2021YFB3701100)Beijing Natural Science Foundation(2192006)National Natural Science Foundation of China(51801004).
文摘Alloying seriously deteriorates the thermal conductivity of magnesium(Mg)alloys,thus,restricts their applications in the fields of computer,communication,and consumer products.In order to improve the thermal conductivity of Mg alloys,adding carbon nanotube(CNT)combined with aging treatment is proposed in this work,i.e.fabricating the D-CNT(a kind of dispersed CNT)reinforced ZK61 matrix composite via powder metallurgy,and conducting aging treatment to the composite.Results indicate the as-aged ZK61/0.6 wt.%D-CNT composite achieved an excellent thermal conductivity of 166 W/(mK),exhibiting 52.3%enhancement in comparison with matrix,as well as tensile yield strength of 321 MPa,ultimate tensile strength of 354 of MPa,and elongation of 14%.The simultaneously enhanced thermal conductivity and mechanical performance are mainly attributed to:(1)the embedded interface of the D-CNT with matrix and(2)the coherent interface of precipitates with matrix.It is expected the current work can provide a clue for devising Mg matrix composites with integrated structural and functional performances,and enlarge the current restricted applications of Mg alloys.
基金supported by the Special Support Program for High-level Talents of Shaanxi Province(No.2020-44)Innnovative Talent Project of China and The Youth Innovation Team of Shaanxi Universities
文摘NiO,an anodic electrochromic material,has applications in energy-saving windows,intelligent displays,and military camouflage.However,its electrochromic mechanism and reasons for its performance degradation in alkaline aqueous electrolytes are complex and poorly understood,making it challenging to improve NiO thin films.We studied the phases and electrochemical characteristics of NiO films in different states(initial,colored,bleached and after 8000 cycles)and identified three main reasons for performance degradation.First,Ni(OH)_(2)is generated during electrochromic cycling and deposited on the NiO film surface,gradually yielding a NiO@Ni(OH)_(2)core-shell structure,isolating the internal NiO film from the electrolyte,and preventing ion transfer.Second,the core-shell structure causes the mode of electrical conduction to change from first-to second-order conduction,reducing the efficiency of ion transfer to the surface Ni(OH)_(2)layer.Third,Ni(OH)_(2)and NiOOH,which have similar crystal structures but different b-axis lattice parameters,are formed during electrochromic cycling,and large volume changes in the unit cell reduce the structural stability of the thin film.Finally,we clarified the mechanism of electrochromic performance degradation of NiO films in alkaline aqueous electrolytes and provide a route to activation of NiO films,which will promote the development of electrochromic technology.
基金supported by the National Natural Science Foundation of China(Grant No.12111530222)the Fundamental Research Funds for the Central Universities(Grant No.23GH02023)+2 种基金the Taicang Basic Research Program Project(Grant No.TC2023JC15)the Shaanxi Key Research and Development Program for International Cooperation and Exchanges(Grant No.2022KWZ-23)the 111 Project of China(Grant No.BP0719007).
文摘In challenging operational environments,Lithium-ion batteries(LIBs)inevitably experience mechanical stresses,including impacts and extrusion,which can lead to battery damage,failure,and even the occurrence of fire and explosion incidents.Consequently,it is imperative to investigate the safety performance of LIBs under mechanical loads.This study is grounded in a more realistic coupling scenario consisting of electrochemical cycling and low-velocity impact.We systematically and experimentally uncovered the mechanical,electrochemical,and thermal responses,damage behavior,and corresponding mechanisms under various conditions.Our study demonstrates that higher impact energy results in increased structural stiffness,maximum temperature,and maximum voltage drop.Furthermore,heightened impact energy significantly influences the electrical resistance parameters within the internal resistance.We also examined the effects of State of Charge(SOC)and C-rates.The methodology and experimental findings will offer insights for enhancing the safety design,conducting risk assessments,and enabling the cascading utilization of energy storage systems based on LIBs.
文摘Corporations actively fulfilling corporate social responsibility(CSR)is of more significance to society's sustainable development nowadays.This research discusses the interaction between CSR and corporate performance and then adopts other mediation variables to explain the underlying mechanism.The empirical analyses are performed on a sample of 201 listed Chinese firms.The result shows that CSR has a weak negative impact on corporate perfbnnance while being positively influenced by corporate performance significantly.Further study finds the reason may be CSR requires financial support,but has little to do with increasing shareholder wealth.
文摘Based on Mongolian medical theory and modern pharmacology,literature on the main components and action mechanism of Hatageqi-7 in the treatment of recurrent aphthous ulcer is collected,sorted and summarized.The research hopes to provide certain basis for its clinical efficacy from theory.
文摘Culture is the core of education and the proper meaning of education. Exploring the realization path and function mechanism of school culture education is a major task for educators at present and in the future. Then, the current academic research started late, had few achievements and was relatively broad and weak. The article believes that the mechanism of school culture educating people includes three fields: “cultural field”, “cultivation field” and “education field”. School teachers and students should be guided to make cultural choices, consciously transform school culture into personal culture, and achieve the purpose of school culture educating people.
基金funded by Livelihood Plan Project of Department of Science and Technology of Liaoning Province(2021JH2/10300069,2019-ZD-0845)Department of Education of Liaoning Province(LJKZ0918)National College Students’Innovation and Entrepreneurship Training Program(202210163013).
文摘Polyphenols are a class of chemical components that are beneficial to human health.Polyphenol compounds provide advanced biomedical applications due to their antioxidant and anti-inflammatory activity.They can also play a role in reducing the risk of various chronic diseases.However,most polyphenols are unstable compounds with low absorption and poor bioavailability which greatly limited their applications.Therefore,the delivery of polyphenols to specific parts of the body has become a therapeutic necessity.In this study,the research of polyphenol delivery systems such as microspheres,nanoparticles,liposomes and gels were mainly summarized.The action mechanism of polyphenols to intestinal microbiota,tumor cells,the brain,pancreas,and liver was analyzed.
基金supported by Hebei Province Higher Education Science and Technology Research Project(No.ZC2024031).
文摘The presence of toxic elements in manganese slag(MSG)poses a threat to the environment due to potential pollution.Utilizing CO_(2) curing on MS offers a promising approach to immobilize toxic substances within this material,thereby mitigating their release into the natural surroundings.This study investigates the impact of CO_(2) cured MS on various rheological parameters,including slump flow,plastic viscosity(η),and yield shear stress(τ).Additionally,it assesses flexural and compressive strengths(f_(t) and f_(cu)),drying shrinkage rates(DSR),durability indicators(chloride ion migration coefficient(CMC),carbonization depth(CD)),and the leaching behavior of heavy metal elements.Microscopic examination via scanning electron microscopy(SEM)is employed to elucidate the underlying mechanisms.The results indicate that CO_(2) curing significantly enhances the slump flow of ultra-high performance concrete(UHPC)by up to 51.2%.Moreover,it reduces UHPC’sηandτby rates ranging from 0%to 52.7%and 0%to 40.2%,respectively.The DSR exhibits a linear increase corresponding to the mass ratio of CO_(2) cured MS.Furthermore,CO_(2) curing enhances both f_(t) and f_(cu) of UHPC by up to 28.7%and 17.6%,respectively.The electrical resistance is also improved,showing an increase of up to 53.7%.The relationship between mechanical strengths and electrical resistance follows a cubic relationship.The CO_(2) cured MS demonstrates a notable decrease in the CMC and CD by rates ranging from 0%to 52.6%and 0%to 26.1%,respectively.The reductions of leached chromium(Cr)and manganese(Mn)are up to 576.3%and 1312.7%,respectively.Overall,CO_(2) curing also enhances the compactness of UHPC,thereby demonstrating its potential to improve both mechanical and durability properties.
基金Tianjin Natural Science Foundation (23JCYBJC00660)Tianjin Enterprise Science and Technology Commissioner Project (23YDTPJC00490)+4 种基金National Natural Science Foundation of China (52203066, 51973157, 61904123)China Postdoctoral Science Foundation Grant (2023M742135)National innovation and entrepreneurship training program for college students (202310058007)Tianjin Municipal college students’ innovation and entrepreneurship training program (202310058088)State Key Laboratory of Membrane and Membrane Separation, Tiangong University。
文摘As the world transitions to green energy, there is a growing focus among many researchers on the requirement for high-efficient and safe batteries. Solid-state lithium metal batteries(SSLMBs) have emerged as a promising alternative to traditional liquid lithium-ion batteries(LIBs), offering higher energy density, enhanced safety, and longer lifespan. The rise of SSLMBs has brought about a transformation in energy storage, with aluminum(Al)-based material dopants playing a crucial role in advancing the next generation of batteries. The review highlights the significance of Al-based material dopants in SSLMBs applications, particularly its contributions to solid-state electrolytes(SSEs), cathodes, anodes,and other components of SSLMBs. Some studies have also shown that Al-based material dopants effectively enhance SSE ion conductivity, stabilize electrode and SSE interfaces, and suppress lithium dendrite growth, thereby enhancing the electrochemical performance of SSLMBs. Despite the above mentioned progresses, there are still problems and challenges need to be addressed. The review offers a comprehensive insight into the important role of Al in SSLMBs and addresses some of the issues related to its applications, endowing valuable support for the practical implementation of SSLMBs.