Water-based aerosol is widely used as an effective strategy in electro-optical countermeasure on the battlefield used to the preponderance of high efficiency,low cost and eco-friendly.Unfortunately,the stability of th...Water-based aerosol is widely used as an effective strategy in electro-optical countermeasure on the battlefield used to the preponderance of high efficiency,low cost and eco-friendly.Unfortunately,the stability of the water-based aerosol is always unsatisfactory due to the rapid evaporation and sedimentation of the aerosol droplets.Great efforts have been devoted to improve the stability of water-based aerosol by using additives with different composition and proportion.However,the lack of the criterion and principle for screening the effective additives results in excessive experimental time consumption and cost.And the stabilization time of the aerosol is still only 30 min,which could not meet the requirements of the perdurable interference.Herein,to improve the stability of water-based aerosol and optimize the complex formulation efficiently,a theoretical calculation method based on thermodynamic entropy theory is proposed.All the factors that influence the shielding effect,including polyol,stabilizer,propellant,water and cosolvent,are considered within calculation.An ultra-stable water-based aerosol with long duration over 120 min is obtained with the optimal fogging agent composition,providing enough time for fighting the electro-optic weapon.Theoretical design guideline for choosing the additives with high phase transition temperature and low phase transition enthalpy is also proposed,which greatly improves the total entropy change and reduce the absolute entropy change of the aerosol cooling process,and gives rise to an enhanced stability of the water-based aerosol.The theoretical calculation methodology contributes to an abstemious time and space for sieving the water-based aerosol with desirable performance and stability,and provides the powerful guarantee to the homeland security.展开更多
Predicting students’academic achievements is an essential issue in education,which can benefit many stakeholders,for instance,students,teachers,managers,etc.Compared with online courses such asMOOCs,students’academi...Predicting students’academic achievements is an essential issue in education,which can benefit many stakeholders,for instance,students,teachers,managers,etc.Compared with online courses such asMOOCs,students’academicrelateddata in the face-to-face physical teaching environment is usually sparsity,and the sample size is relativelysmall.It makes building models to predict students’performance accurately in such an environment even morechallenging.This paper proposes a Two-WayNeuralNetwork(TWNN)model based on the bidirectional recurrentneural network and graph neural network to predict students’next semester’s course performance using only theirprevious course achievements.Extensive experiments on a real dataset show that our model performs better thanthe baselines in many indicators.展开更多
The composition of base oils affects the performance of lubricants made from them.This paper proposes a hybrid model based on gradient-boosted decision tree(GBDT)to analyze the effect of different ratios of KN4010,PAO...The composition of base oils affects the performance of lubricants made from them.This paper proposes a hybrid model based on gradient-boosted decision tree(GBDT)to analyze the effect of different ratios of KN4010,PAO40,and PriEco3000 component in a composite base oil system on the performance of lubricants.The study was conducted under small laboratory sample conditions,and a data expansion method using the Gaussian Copula function was proposed to improve the prediction ability of the hybrid model.The study also compared four optimization algorithms,sticky mushroom algorithm(SMA),genetic algorithm(GA),whale optimization algorithm(WOA),and seagull optimization algorithm(SOA),to predict the kinematic viscosity at 40℃,kinematic viscosity at 100℃,viscosity index,and oxidation induction time performance of the lubricant.The results showed that the Gaussian Copula function data expansion method improved the prediction ability of the hybrid model in the case of small samples.The SOA-GBDT hybrid model had the fastest convergence speed for the samples and the best prediction effect,with determination coefficients(R^(2))for the four indicators of lubricants reaching 0.98,0.99,0.96 and 0.96,respectively.Thus,this model can significantly reduce the model’s prediction error and has good prediction ability.展开更多
After the spread of COVID-19,e-learning systems have become crucial tools in educational systems worldwide,spanning all levels of education.This widespread use of e-learning platforms has resulted in the accumulation ...After the spread of COVID-19,e-learning systems have become crucial tools in educational systems worldwide,spanning all levels of education.This widespread use of e-learning platforms has resulted in the accumulation of vast amounts of valuable data,making it an attractive resource for predicting student performance.In this study,we aimed to predict student performance based on the analysis of data collected from the OULAD and Deeds datasets.The stacking method was employed for modeling in this research.The proposed model utilized weak learners,including nearest neighbor,decision tree,random forest,enhanced gradient,simple Bayes,and logistic regression algorithms.After a trial-and-error process,the logistic regression algorithm was selected as the final learner for the proposed model.The results of experiments with the above algorithms are reported separately for the pass and fail classes.The findings indicate that the accuracy of the proposed model on the OULAD dataset reached 98%.Overall,the proposed method improved accuracy by 4%on the OULAD dataset.展开更多
Performance prediction for centrifugal pumps is now mainly based on numerical calculation and most of the studies merely focus on one model. Therefore, the research results are not representative. To make an improveme...Performance prediction for centrifugal pumps is now mainly based on numerical calculation and most of the studies merely focus on one model. Therefore, the research results are not representative. To make an improvement of numerical calculation method and performance prediction for centrifugal pumps, performance of six centrifugal pump models at design flow rate and off design flow rates, whose specific speed are different, were simulated by using commercial code FLUENT. The standard k-t turbulence model and SIMPLEC algorithm were chosen in FLUENT. The simulation was steady and moving reference frame was used to consider the impeller-volute interaction. Also, how to dispose the gap between impeller and volute was presented and the effect of grid number was considered. The characteristic prediction model for centrifugal pumps is established according to the simulation results. The head and efficiency of the six models at different flow rates are predicted and the prediction results are compared with the experiment results in detail. The comparison indicates that the precision of head and efficiency prediction are all less than 5%. The flow analysis indicates that flow change has an important effect on the location and area of low pressure region behind the blade inlet and the direction of velocity at impeller inlet. The study shows that using FLUENT simulation results to predict performance of centrifugal pumps is feasible and accurate. The method can be applied in engineering practice.展开更多
A pplication o f m echanical excavators is one o f th e m o st com m only used excavation m eth o d s because itcan bring th e p ro ject m ore productivity, accuracy and safety. A m ong th e m echanical excavators, ro...A pplication o f m echanical excavators is one o f th e m o st com m only used excavation m eth o d s because itcan bring th e p ro ject m ore productivity, accuracy and safety. A m ong th e m echanical excavators, roadhead ers are m echanical m iners w h ich have b een extensively u se d in tu n n elin g , m ining an d civil indu stries. Perform ance pred ictio n is an im p o rta n t issue for successful ro a d h e a d e r application andgenerally deals w ith m achine selection, p ro d u ctio n rate an d b it consu m p tio n . The m ain aim o f thisresearch is to investigate th e c u ttin g p erfo rm an ce (in stan tan eo u s c u ttin g rates (ICRs)) o f m ed iu m -d u tyro ad h ead ers by using artificial neural n etw o rk (ANN) approach. T here are d ifferent categories forANNs, b u t based o n train in g alg o rith m th e re are tw o m ain k in d s: supervised and u n su p erv ised . Them u lti-lay er p ercep tro n (MLP) an d K ohonen self-organizing feature m ap (KSOFM) are th e m o st w idelyused neu ral netw o rk s for supervised an d u n su p erv ised ones, respectively. For gaining this goal, ad atab ase w as prim arily provided from ro ad h e a d e rs' p erfo rm an ce an d geom echanical characteristics o frock form ations in tu n n els and d rift galleries in Tabas coal m ine, th e larg est an d th e only fullymech an ized coal m ine in Iran. T hen th e datab ase w as analyzed in o rd e r to yield th e m ost im p o rtan tfactor for ICR by using relatively im p o rta n t factor in w hich G arson eq u atio n w as utilized. The MLPn etw o rk w as train ed by 3 in p u t p ara m e te rs including rock m ass pro p erties, rock quality d esignation(RQD), in tact rock p ro p erties such as uniaxial com pressive stre n g th (UCS) an d Brazilian ten sile stren g th(BTS), and o n e o u tp u t p a ra m e te r (ICR). In o rd e r to have m ore v alidation o n MLP o u tp u ts, KSOFM visualizationw as applied. The m ean square e rro r (MSE) an d regression coefficient (R ) o f MLP w e re found tobe 5.49 an d 0.97, respectively. M oreover, KSOFM n etw o rk has a m ap size o f 8 x 5 and final qu an tizatio nan d topographic erro rs w e re 0.383 an d 0.032, respectively. The results show th a t MLP neural n etw orkshave a strong capability to p red ict an d ev alu ate th e perfo rm an ce o f m ed iu m -d u ty ro ad h ead ers in coalm easu re rocks. Furtherm ore, it is concluded th a t KSOFM neural n etw o rk is an efficient w ay for u n d e rstand in g system beh av io r an d know ledge extraction. Finally, it is indicated th a t UCS has m ore influenceo n ICR b y applying th e b e st train ed MLP n etw o rk w eig h ts in G arson eq u atio n w h ich is also confirm ed byKSOFM.展开更多
A three-dimensional turbulent flow through an entire centrifugal pump is simulated using k-ε turbulence model modified by rotation and curvature, SIMPLEC method and body-fitted coordinate. The velocity and pressure f...A three-dimensional turbulent flow through an entire centrifugal pump is simulated using k-ε turbulence model modified by rotation and curvature, SIMPLEC method and body-fitted coordinate. The velocity and pressure fields are obtained for the pump under various working conditions, which is used to predict the head and hydraulic efficiency of the pump, and the results correspond well with the measured values. The calculation results indicate that the pressure is higher on the pressure side than that on the suction side of the blade; The relative velocity on the suction side gradually decreases from the impeller inlet to the outlet, while increases on the pressure side, it finally results in the lower relative velocity on the suction side and the higher one on the pressure side at the impeller outlet; The impeller flow field is asymmetric, i.e. the velocity and pressure fields arc totally different among all channels in the impeller; In the volute, the static pressure gradually increases with the flow route, and a large pressure gratitude occurs in the tongue; Secondary flow exists in the rear part of the spiral.展开更多
Machine learning(ML) models provide great opportunities to accelerate novel material development, offering a virtual alternative to laborious and resource-intensive empirical methods. In this work, the second of a two...Machine learning(ML) models provide great opportunities to accelerate novel material development, offering a virtual alternative to laborious and resource-intensive empirical methods. In this work, the second of a two-part study, an ML approach is presented that offers accelerated digital design of Mg alloys. A systematic evaluation of four ML regression algorithms was explored to rationalise the complex relationships in Mg-alloy data and to capture the composition-processing-property patterns. Cross-validation and hold-out set validation techniques were utilised for unbiased estimation of model performance. Using atomic and thermodynamic properties of the alloys, feature augmentation was examined to define the most descriptive representation spaces for the alloy data. Additionally, a graphical user interface(GUI) webtool was developed to facilitate the use of the proposed models in predicting the mechanical properties of new Mg alloys. The results demonstrate that random forest regression model and neural network are robust models for predicting the ultimate tensile strength and ductility of Mg alloys, with accuracies of ~80% and 70% respectively. The developed models in this work are a step towards high-throughput screening of novel candidates for target mechanical properties and provide ML-guided alloy design.展开更多
Evaluating the adaptability of cantilever boring machine(CBM) through in-depth excavation and analysis of tunnel excavation data and rock mass parameters is the premise of mechanical design and efficient excavation in...Evaluating the adaptability of cantilever boring machine(CBM) through in-depth excavation and analysis of tunnel excavation data and rock mass parameters is the premise of mechanical design and efficient excavation in the field of underground space engineering.This paper presented a case study of tunnelling performance prediction method of CBM in sedimentary hard-rock tunnel of Karst landform type by using tunneling data and surrounding rock parameters.The uniaxial compressive strength(UCS),rock integrity factor(Kv),basic quality index([BQ]),rock quality index RQD,brazilian tensile strength(BTS) and brittleness index(BI) were introduced to construct a performance prediction database based on the hard-rock tunnel of Guiyang Metro Line 1 and Line 3,and then established the performance prediction model of cantilever boring machine.Then the deep belief network(DBN) was introduced into the performance prediction model,and the reliability of performance prediction model was verified by combining with engineering data.The study showed that the influence degree of surrounding rock parameters on the tunneling performance of the cantilever boring machine is UCS > [BQ] > BTS >RQD > Kv > BI.The performance prediction model shows that the instantaneous cutting rate(ICR) has a good correlation with the surrounding rock parameters,and the predicting model accuracy is related to the reliability of construction data.The prediction of limestone and dolomite sections of Line 3 based on the DBN performance prediction model shows that the measured ICR and predicted ICR is consistent and the built performance prediction model is reliable.The research results have theoretical reference significance for the applicability analysis and mechanical selection of cantilever boring machine for hard rock tunnel.展开更多
Bamboo is a renewable natural building material with good mechanical properties.However,due to the heterogeneity and anisotropy of bamboo stalk,a large amount of material performance testing costs are required in engi...Bamboo is a renewable natural building material with good mechanical properties.However,due to the heterogeneity and anisotropy of bamboo stalk,a large amount of material performance testing costs are required in engineering applications.In this work,longitudinal compression,bending,longitudinal shear,longitudinal tensile,transverse compression and transverse tensile tests of bamboo materials are conducted,considering the influence of the bamboo nodes.The mechanical properties of the whole bamboo stalk with the wall thickness and outer circumference are explored.Through univariate and multiple regression analysis,the relationship between mechanical properties and wall thickness and perimeter is fitted,and the conversion parameters between different mechanical properties are derived.The research results show that the transverse compressive strength of nodal specimen,and transverse tensile strength of nodal and inter-node specimens increase with the increase of wall thickness and outer circumference,but other mechanical properties decrease with the increase of wall thickness and outer circumference.The prediction formula and conversion parameters of bamboo mechanical properties proposed in this research have high applicability and accuracy.Moreover,this research can provide references for the evaluation of bamboo performance and saving test costs.展开更多
Rate of penetration(ROP) of a tunnel boring machine(TBM) in a rock environment is generally a key parameter for the successful accomplishment of a tunneling project. The objectives of this work are to compare the accu...Rate of penetration(ROP) of a tunnel boring machine(TBM) in a rock environment is generally a key parameter for the successful accomplishment of a tunneling project. The objectives of this work are to compare the accuracy of prediction models employing partial least squares(PLS) regression and support vector machine(SVM) regression technique for modeling the penetration rate of TBM. To develop the proposed models, the database that is composed of intact rock properties including uniaxial compressive strength(UCS), Brazilian tensile strength(BTS), and peak slope index(PSI), and also rock mass properties including distance between planes of weakness(DPW) and the alpha angle(α) are input as dependent variables and the measured ROP is chosen as an independent variable. Two hundred sets of data are collected from Queens Water Tunnel and Karaj-Tehran water transfer tunnel TBM project. The accuracy of the prediction models is measured by the coefficient of determination(R2) and root mean squares error(RMSE) between predicted and observed yield employing 10-fold cross-validation schemes. The R2 and RMSE of prediction are 0.8183 and 0.1807 for SVMR method, and 0.9999 and 0.0011 for PLS method, respectively. Comparison between the values of statistical parameters reveals the superiority of the PLSR model over SVMR one.展开更多
Two new binary near-azeotropic mixtures named M1 and M2 were developed as the refrigerants of the high-temperature heat pump(HTHP).The experimental research was used to analyze and compare the performance of M1 and M2...Two new binary near-azeotropic mixtures named M1 and M2 were developed as the refrigerants of the high-temperature heat pump(HTHP).The experimental research was used to analyze and compare the performance of M1 and M2-based in the HTHP in different running conditions.The results demonstrated the feasibility and reliability of M1 and M2 as new high-temperature refrigerants.Additionally,the exploration and analyses of the support vector machine(SVM)and back propagation(BP)neural network models were made to find a practical way to predict the performance of HTHP system.The results showed that SVM-Linear,SVM-RBF and BP models shared the similar ability to predict the heat capacity and power input with high accuracy.SVM-RBF demonstrated better stability for coefficient of performance prediction.Finally,the proposed SVM model was used to assess the potential of the M1 and M2.The results indicated that the HTHP system using M1 could produce heat at the temperature of 130°C with good performance.展开更多
Vehicle interior noise has emerged as a crucial assessment criterion for automotive NVH(Noise,Vibration,and Harshness).When analyzing the NVH performance of the vehicle body,the traditional SEA(Statistical Energy Anal...Vehicle interior noise has emerged as a crucial assessment criterion for automotive NVH(Noise,Vibration,and Harshness).When analyzing the NVH performance of the vehicle body,the traditional SEA(Statistical Energy Analysis)simulation technology is usually limited by the accuracy of the material parameters obtained during the acoustic package modeling and the limitations of the application conditions.In order to effectively solve these shortcomings,based on the analysis of the vehicle noise transmission path,a multi-level objective decomposition architecture of the interior noise at the driver’s right ear is established.Combined with the data-driven method,the ResNet neural network model is introduced.The stacked residual blocks avoid the problem of gradient dis-appearance caused by the increasing network level of the traditional CNN network,thus establishing a higher-precision prediction model.This method alleviates the inherent limitations of traditional SEA simulation design,and enhances the prediction performance of the ResNet model by dynamically adjusting the learning rate.Finally,the proposed method is applied to a specific vehicle model and verified.The results show that the proposed meth-od has significant advantages in prediction accuracy and robustness.展开更多
In conventional chromite beneficiation plant, huge quantity of chromite is used to loss in the form of tailing. For recovery these valuable mineral, a gravity concentrator viz. wet shaking table was used.Optimisation ...In conventional chromite beneficiation plant, huge quantity of chromite is used to loss in the form of tailing. For recovery these valuable mineral, a gravity concentrator viz. wet shaking table was used.Optimisation along with performance prediction of the unit operation is necessary for efficient recovery.So, in this present study, an artificial neural network(ANN) modeling approach was attempted for predicting the performance of wet shaking table in terms of grade(%) and recovery(%). A three layer feed forward neural network(3:3–11–2:2) was developed by varying the major operating parameters such as wash water flow rate(L/min), deck tilt angle(degree) and slurry feed rate(L/h). The predicted value obtained by the neural network model shows excellent agreement with the experimental values.展开更多
The classical momentum-blade element theory is improved by using the empirical formula while part of rotor blades enters into the turbulent wake state, and the performance of a horizontal-axis wind turbine (HAWT) at a...The classical momentum-blade element theory is improved by using the empirical formula while part of rotor blades enters into the turbulent wake state, and the performance of a horizontal-axis wind turbine (HAWT) at all speed ratios can be predicted. By using an improved version of the so-called secant method, the convergent solutions of the system of two-dimensional equations concerning the induced velocity factors a and a' are guaranteed. Besides, a solving method of multiple solutions for a and a' is proposed and discussed. The method provided in this paper can be used for computing the aerodynamic performance of HAWTs both ofrlow solidity and of high solidity. The calculated results coincide well with the experimental data.展开更多
In this work,the photovoltaic properties of BFBPD-PC61 BM system as a promising high-performance organic solar cell(OSC) were theoretically investigated by means of quantum chemistry and molecular dynamics calculati...In this work,the photovoltaic properties of BFBPD-PC61 BM system as a promising high-performance organic solar cell(OSC) were theoretically investigated by means of quantum chemistry and molecular dynamics calculations coupled with the incoherent charge-hopping model.Moreover,the hole carrier mobility of BFBPD thin-film was also estimated with the aid of an amorphous cell including 100 BFBPD molecules.Results revealed that the BFBPD-PC61 BM system possesses a middle-sized open-circuit voltage of 0.70 V,large short-circuit current density of 17.26 mA ·cm^-2,high fill factor of 0.846,and power conversion efficiency of 10%.With the Marcus model,in the BFBPD-PC61 BM interface,the exciton-dissociation rate,kdis,was predicted to be 2.684×10^13 s^-1,which is as 3-5 orders of magnitude large as the decay(radiative and non-radiative) one(10-8-10^10s^-1),indicating a high exciton-dissociation efficiency of 100% in the BFBPD-PC61 BM interface.Furthermore,by the molecular dynamics simulation,the hole mobility of BFBPD thin-film was predicted to be as high as 1.265 × 10^-2 cm-2·V^-1·s^-1,which can be attributed to its dense packing in solid state.展开更多
This paper presents a software simulator applicable to multipath fading channels in urban environments of mobile communication networks. The simulator is constructed by a two-state Markov model and several statistical...This paper presents a software simulator applicable to multipath fading channels in urban environments of mobile communication networks. The simulator is constructed by a two-state Markov model and several statistical models for simulating the characterizations of different environments. A core idea of the simulator is to construct a Rice distribution-based multipath fading module produced by a modified Gans Doppler power spectrum, and in combination with a Markov model to predict the time-dependent characteristics of packet in different radio circumstances. It can simply predict the packet performance of the future channel and evaluate the relations between the radio channel and the modulation schemes, error control protocols and channel coding. Simulation results demonstrate that it is a reliable and efficient method.展开更多
In order to effectively program Parallel Computing on NOW (Network of workstation),users must be able to evaluate how well the system performs for a given application.In this paper,we present an framework that can be...In order to effectively program Parallel Computing on NOW (Network of workstation),users must be able to evaluate how well the system performs for a given application.In this paper,we present an framework that can be used to evaluate tree structured computing on NOW.Based on this framework,we derive a model for the famous parallel programming paradigm divide and conquer.We discuss how this model can be used to evaluate performance and how it can be used to restructure the application to improve performance.展开更多
A model of three-level amplified spontaneous emission(ASE)sources,considering radiation effect,is proposed to predict radiation induced loss of output power in radiation environment.Radiation absorption parameters of ...A model of three-level amplified spontaneous emission(ASE)sources,considering radiation effect,is proposed to predict radiation induced loss of output power in radiation environment.Radiation absorption parameters of ASE sources model are obtained by the fitting of color centers generation and recovery process of gain loss data at lower dose rate.Gain loss data at higher dose is applied for self-validating.This model takes both the influence of erbium ions absorption and photon bleaching effect into consideration,which makes the prediction of different dose and dose rate more accurate and flexible.The fitness value between ASE model and gain loss data is 99.98%,which also satisfies the extrapolation at the low dose rate.The method and model may serve as a valuable tool to predict ASE performance in harsh environment.展开更多
Traditional methods for performance prediction of a turbomachinery are usually based on certain computations from a set of data obtained in limited experiment measurements of the machine, or the machinemodels. Since ...Traditional methods for performance prediction of a turbomachinery are usually based on certain computations from a set of data obtained in limited experiment measurements of the machine, or the machinemodels. Since the computational (mathematical) models used in such performance prediction are often crude, most of the predicted results are only correct in very small ranges around the known data points. Beyond the limited ranges, the accuracy of the resultant predictions decrease abruptly. Therefore, an alternative approach, neural network technique, is studied for performance prediction of turbomachinery. The new approach has been applied to two typical performance prediction cases to verify its feasibility and reliability.展开更多
基金supported by the Preparation and Characterization of Fogging Agents,Cooperative Project of China(Grant No.1900030040)Preparation and Test of Fogging Agents,Cooperative Project of China(Grant No.2200030085)。
文摘Water-based aerosol is widely used as an effective strategy in electro-optical countermeasure on the battlefield used to the preponderance of high efficiency,low cost and eco-friendly.Unfortunately,the stability of the water-based aerosol is always unsatisfactory due to the rapid evaporation and sedimentation of the aerosol droplets.Great efforts have been devoted to improve the stability of water-based aerosol by using additives with different composition and proportion.However,the lack of the criterion and principle for screening the effective additives results in excessive experimental time consumption and cost.And the stabilization time of the aerosol is still only 30 min,which could not meet the requirements of the perdurable interference.Herein,to improve the stability of water-based aerosol and optimize the complex formulation efficiently,a theoretical calculation method based on thermodynamic entropy theory is proposed.All the factors that influence the shielding effect,including polyol,stabilizer,propellant,water and cosolvent,are considered within calculation.An ultra-stable water-based aerosol with long duration over 120 min is obtained with the optimal fogging agent composition,providing enough time for fighting the electro-optic weapon.Theoretical design guideline for choosing the additives with high phase transition temperature and low phase transition enthalpy is also proposed,which greatly improves the total entropy change and reduce the absolute entropy change of the aerosol cooling process,and gives rise to an enhanced stability of the water-based aerosol.The theoretical calculation methodology contributes to an abstemious time and space for sieving the water-based aerosol with desirable performance and stability,and provides the powerful guarantee to the homeland security.
基金the National Natural Science Foundation of China under Grant Nos.U2268204,62172061 and 61662017National Key R&D Program of China under Grant Nos.2020YFB1711800 and 2020YFB1707900+1 种基金the Science and Technology Project of Sichuan Province under Grant Nos.2022YFG0155,2022YFG0157,2021GFW019,2021YFG0152,2021YFG0025,2020YFG0322the Guangxi Natural Science Foundation Project under Grant No.2021GXNSFAA220074.
文摘Predicting students’academic achievements is an essential issue in education,which can benefit many stakeholders,for instance,students,teachers,managers,etc.Compared with online courses such asMOOCs,students’academicrelateddata in the face-to-face physical teaching environment is usually sparsity,and the sample size is relativelysmall.It makes building models to predict students’performance accurately in such an environment even morechallenging.This paper proposes a Two-WayNeuralNetwork(TWNN)model based on the bidirectional recurrentneural network and graph neural network to predict students’next semester’s course performance using only theirprevious course achievements.Extensive experiments on a real dataset show that our model performs better thanthe baselines in many indicators.
基金financial support extended for this academic work by the Beijing Natural Science Foundation(Grant 2232066)the Open Project Foundation of State Key Laboratory of Solid Lubrication(Grant LSL-2212).
文摘The composition of base oils affects the performance of lubricants made from them.This paper proposes a hybrid model based on gradient-boosted decision tree(GBDT)to analyze the effect of different ratios of KN4010,PAO40,and PriEco3000 component in a composite base oil system on the performance of lubricants.The study was conducted under small laboratory sample conditions,and a data expansion method using the Gaussian Copula function was proposed to improve the prediction ability of the hybrid model.The study also compared four optimization algorithms,sticky mushroom algorithm(SMA),genetic algorithm(GA),whale optimization algorithm(WOA),and seagull optimization algorithm(SOA),to predict the kinematic viscosity at 40℃,kinematic viscosity at 100℃,viscosity index,and oxidation induction time performance of the lubricant.The results showed that the Gaussian Copula function data expansion method improved the prediction ability of the hybrid model in the case of small samples.The SOA-GBDT hybrid model had the fastest convergence speed for the samples and the best prediction effect,with determination coefficients(R^(2))for the four indicators of lubricants reaching 0.98,0.99,0.96 and 0.96,respectively.Thus,this model can significantly reduce the model’s prediction error and has good prediction ability.
文摘After the spread of COVID-19,e-learning systems have become crucial tools in educational systems worldwide,spanning all levels of education.This widespread use of e-learning platforms has resulted in the accumulation of vast amounts of valuable data,making it an attractive resource for predicting student performance.In this study,we aimed to predict student performance based on the analysis of data collected from the OULAD and Deeds datasets.The stacking method was employed for modeling in this research.The proposed model utilized weak learners,including nearest neighbor,decision tree,random forest,enhanced gradient,simple Bayes,and logistic regression algorithms.After a trial-and-error process,the logistic regression algorithm was selected as the final learner for the proposed model.The results of experiments with the above algorithms are reported separately for the pass and fail classes.The findings indicate that the accuracy of the proposed model on the OULAD dataset reached 98%.Overall,the proposed method improved accuracy by 4%on the OULAD dataset.
基金supported by National Outstanding Young Scientists Founds of China (Grant No. 50825902)National Natural Science Foundation of China (Grant No. 50509009)
文摘Performance prediction for centrifugal pumps is now mainly based on numerical calculation and most of the studies merely focus on one model. Therefore, the research results are not representative. To make an improvement of numerical calculation method and performance prediction for centrifugal pumps, performance of six centrifugal pump models at design flow rate and off design flow rates, whose specific speed are different, were simulated by using commercial code FLUENT. The standard k-t turbulence model and SIMPLEC algorithm were chosen in FLUENT. The simulation was steady and moving reference frame was used to consider the impeller-volute interaction. Also, how to dispose the gap between impeller and volute was presented and the effect of grid number was considered. The characteristic prediction model for centrifugal pumps is established according to the simulation results. The head and efficiency of the six models at different flow rates are predicted and the prediction results are compared with the experiment results in detail. The comparison indicates that the precision of head and efficiency prediction are all less than 5%. The flow analysis indicates that flow change has an important effect on the location and area of low pressure region behind the blade inlet and the direction of velocity at impeller inlet. The study shows that using FLUENT simulation results to predict performance of centrifugal pumps is feasible and accurate. The method can be applied in engineering practice.
文摘A pplication o f m echanical excavators is one o f th e m o st com m only used excavation m eth o d s because itcan bring th e p ro ject m ore productivity, accuracy and safety. A m ong th e m echanical excavators, roadhead ers are m echanical m iners w h ich have b een extensively u se d in tu n n elin g , m ining an d civil indu stries. Perform ance pred ictio n is an im p o rta n t issue for successful ro a d h e a d e r application andgenerally deals w ith m achine selection, p ro d u ctio n rate an d b it consu m p tio n . The m ain aim o f thisresearch is to investigate th e c u ttin g p erfo rm an ce (in stan tan eo u s c u ttin g rates (ICRs)) o f m ed iu m -d u tyro ad h ead ers by using artificial neural n etw o rk (ANN) approach. T here are d ifferent categories forANNs, b u t based o n train in g alg o rith m th e re are tw o m ain k in d s: supervised and u n su p erv ised . Them u lti-lay er p ercep tro n (MLP) an d K ohonen self-organizing feature m ap (KSOFM) are th e m o st w idelyused neu ral netw o rk s for supervised an d u n su p erv ised ones, respectively. For gaining this goal, ad atab ase w as prim arily provided from ro ad h e a d e rs' p erfo rm an ce an d geom echanical characteristics o frock form ations in tu n n els and d rift galleries in Tabas coal m ine, th e larg est an d th e only fullymech an ized coal m ine in Iran. T hen th e datab ase w as analyzed in o rd e r to yield th e m ost im p o rtan tfactor for ICR by using relatively im p o rta n t factor in w hich G arson eq u atio n w as utilized. The MLPn etw o rk w as train ed by 3 in p u t p ara m e te rs including rock m ass pro p erties, rock quality d esignation(RQD), in tact rock p ro p erties such as uniaxial com pressive stre n g th (UCS) an d Brazilian ten sile stren g th(BTS), and o n e o u tp u t p a ra m e te r (ICR). In o rd e r to have m ore v alidation o n MLP o u tp u ts, KSOFM visualizationw as applied. The m ean square e rro r (MSE) an d regression coefficient (R ) o f MLP w e re found tobe 5.49 an d 0.97, respectively. M oreover, KSOFM n etw o rk has a m ap size o f 8 x 5 and final qu an tizatio nan d topographic erro rs w e re 0.383 an d 0.032, respectively. The results show th a t MLP neural n etw orkshave a strong capability to p red ict an d ev alu ate th e perfo rm an ce o f m ed iu m -d u ty ro ad h ead ers in coalm easu re rocks. Furtherm ore, it is concluded th a t KSOFM neural n etw o rk is an efficient w ay for u n d e rstand in g system beh av io r an d know ledge extraction. Finally, it is indicated th a t UCS has m ore influenceo n ICR b y applying th e b e st train ed MLP n etw o rk w eig h ts in G arson eq u atio n w h ich is also confirm ed byKSOFM.
基金This project is supported by Provincial Natural Science Foundation of Jiangsu, China(No.BK2004406)Provincial Innovation Foundation for Graduate Students of Jiangsu, China(No.1223000053
文摘A three-dimensional turbulent flow through an entire centrifugal pump is simulated using k-ε turbulence model modified by rotation and curvature, SIMPLEC method and body-fitted coordinate. The velocity and pressure fields are obtained for the pump under various working conditions, which is used to predict the head and hydraulic efficiency of the pump, and the results correspond well with the measured values. The calculation results indicate that the pressure is higher on the pressure side than that on the suction side of the blade; The relative velocity on the suction side gradually decreases from the impeller inlet to the outlet, while increases on the pressure side, it finally results in the lower relative velocity on the suction side and the higher one on the pressure side at the impeller outlet; The impeller flow field is asymmetric, i.e. the velocity and pressure fields arc totally different among all channels in the impeller; In the volute, the static pressure gradually increases with the flow route, and a large pressure gratitude occurs in the tongue; Secondary flow exists in the rear part of the spiral.
基金the support of the Monash-IITB Academy Scholarshipthe Australian Research Council for funding the present research (DP190103592)。
文摘Machine learning(ML) models provide great opportunities to accelerate novel material development, offering a virtual alternative to laborious and resource-intensive empirical methods. In this work, the second of a two-part study, an ML approach is presented that offers accelerated digital design of Mg alloys. A systematic evaluation of four ML regression algorithms was explored to rationalise the complex relationships in Mg-alloy data and to capture the composition-processing-property patterns. Cross-validation and hold-out set validation techniques were utilised for unbiased estimation of model performance. Using atomic and thermodynamic properties of the alloys, feature augmentation was examined to define the most descriptive representation spaces for the alloy data. Additionally, a graphical user interface(GUI) webtool was developed to facilitate the use of the proposed models in predicting the mechanical properties of new Mg alloys. The results demonstrate that random forest regression model and neural network are robust models for predicting the ultimate tensile strength and ductility of Mg alloys, with accuracies of ~80% and 70% respectively. The developed models in this work are a step towards high-throughput screening of novel candidates for target mechanical properties and provide ML-guided alloy design.
基金National Natural Science Foundation of China (Grant No.52178393)the Science and Technology Innovation Team of Shaanxi Innovation Capability Support Plan (Grant No.2020TD005)Science and Technology Innovation Project of China Railway Construction Bridge Engineering Bureau Group Co.,Ltd.(Grant No.DQJ-2020-B07)。
文摘Evaluating the adaptability of cantilever boring machine(CBM) through in-depth excavation and analysis of tunnel excavation data and rock mass parameters is the premise of mechanical design and efficient excavation in the field of underground space engineering.This paper presented a case study of tunnelling performance prediction method of CBM in sedimentary hard-rock tunnel of Karst landform type by using tunneling data and surrounding rock parameters.The uniaxial compressive strength(UCS),rock integrity factor(Kv),basic quality index([BQ]),rock quality index RQD,brazilian tensile strength(BTS) and brittleness index(BI) were introduced to construct a performance prediction database based on the hard-rock tunnel of Guiyang Metro Line 1 and Line 3,and then established the performance prediction model of cantilever boring machine.Then the deep belief network(DBN) was introduced into the performance prediction model,and the reliability of performance prediction model was verified by combining with engineering data.The study showed that the influence degree of surrounding rock parameters on the tunneling performance of the cantilever boring machine is UCS > [BQ] > BTS >RQD > Kv > BI.The performance prediction model shows that the instantaneous cutting rate(ICR) has a good correlation with the surrounding rock parameters,and the predicting model accuracy is related to the reliability of construction data.The prediction of limestone and dolomite sections of Line 3 based on the DBN performance prediction model shows that the measured ICR and predicted ICR is consistent and the built performance prediction model is reliable.The research results have theoretical reference significance for the applicability analysis and mechanical selection of cantilever boring machine for hard rock tunnel.
基金This research was funded by the National Key Research&Development Program(Grant No.2017YFC0703500).
文摘Bamboo is a renewable natural building material with good mechanical properties.However,due to the heterogeneity and anisotropy of bamboo stalk,a large amount of material performance testing costs are required in engineering applications.In this work,longitudinal compression,bending,longitudinal shear,longitudinal tensile,transverse compression and transverse tensile tests of bamboo materials are conducted,considering the influence of the bamboo nodes.The mechanical properties of the whole bamboo stalk with the wall thickness and outer circumference are explored.Through univariate and multiple regression analysis,the relationship between mechanical properties and wall thickness and perimeter is fitted,and the conversion parameters between different mechanical properties are derived.The research results show that the transverse compressive strength of nodal specimen,and transverse tensile strength of nodal and inter-node specimens increase with the increase of wall thickness and outer circumference,but other mechanical properties decrease with the increase of wall thickness and outer circumference.The prediction formula and conversion parameters of bamboo mechanical properties proposed in this research have high applicability and accuracy.Moreover,this research can provide references for the evaluation of bamboo performance and saving test costs.
基金Project(2010CB732004)supported by the National Basic Research Program of ChinaProjects(50934006,41272304)supported by the National Natural Science Foundation of China
文摘Rate of penetration(ROP) of a tunnel boring machine(TBM) in a rock environment is generally a key parameter for the successful accomplishment of a tunneling project. The objectives of this work are to compare the accuracy of prediction models employing partial least squares(PLS) regression and support vector machine(SVM) regression technique for modeling the penetration rate of TBM. To develop the proposed models, the database that is composed of intact rock properties including uniaxial compressive strength(UCS), Brazilian tensile strength(BTS), and peak slope index(PSI), and also rock mass properties including distance between planes of weakness(DPW) and the alpha angle(α) are input as dependent variables and the measured ROP is chosen as an independent variable. Two hundred sets of data are collected from Queens Water Tunnel and Karaj-Tehran water transfer tunnel TBM project. The accuracy of the prediction models is measured by the coefficient of determination(R2) and root mean squares error(RMSE) between predicted and observed yield employing 10-fold cross-validation schemes. The R2 and RMSE of prediction are 0.8183 and 0.1807 for SVMR method, and 0.9999 and 0.0011 for PLS method, respectively. Comparison between the values of statistical parameters reveals the superiority of the PLSR model over SVMR one.
基金Project (2015CB251403) supported by the National Key Basic Research Program of China(973)
文摘Two new binary near-azeotropic mixtures named M1 and M2 were developed as the refrigerants of the high-temperature heat pump(HTHP).The experimental research was used to analyze and compare the performance of M1 and M2-based in the HTHP in different running conditions.The results demonstrated the feasibility and reliability of M1 and M2 as new high-temperature refrigerants.Additionally,the exploration and analyses of the support vector machine(SVM)and back propagation(BP)neural network models were made to find a practical way to predict the performance of HTHP system.The results showed that SVM-Linear,SVM-RBF and BP models shared the similar ability to predict the heat capacity and power input with high accuracy.SVM-RBF demonstrated better stability for coefficient of performance prediction.Finally,the proposed SVM model was used to assess the potential of the M1 and M2.The results indicated that the HTHP system using M1 could produce heat at the temperature of 130°C with good performance.
基金This research was funded by the SWJTU Science and Technology Innovation Project,Grant Number 2682022CX008the Natural Science Foundation of Sichuan Province,Grant Numbers 2022NSFSC1892,2023NSFSC0395.
文摘Vehicle interior noise has emerged as a crucial assessment criterion for automotive NVH(Noise,Vibration,and Harshness).When analyzing the NVH performance of the vehicle body,the traditional SEA(Statistical Energy Analysis)simulation technology is usually limited by the accuracy of the material parameters obtained during the acoustic package modeling and the limitations of the application conditions.In order to effectively solve these shortcomings,based on the analysis of the vehicle noise transmission path,a multi-level objective decomposition architecture of the interior noise at the driver’s right ear is established.Combined with the data-driven method,the ResNet neural network model is introduced.The stacked residual blocks avoid the problem of gradient dis-appearance caused by the increasing network level of the traditional CNN network,thus establishing a higher-precision prediction model.This method alleviates the inherent limitations of traditional SEA simulation design,and enhances the prediction performance of the ResNet model by dynamically adjusting the learning rate.Finally,the proposed method is applied to a specific vehicle model and verified.The results show that the proposed meth-od has significant advantages in prediction accuracy and robustness.
文摘In conventional chromite beneficiation plant, huge quantity of chromite is used to loss in the form of tailing. For recovery these valuable mineral, a gravity concentrator viz. wet shaking table was used.Optimisation along with performance prediction of the unit operation is necessary for efficient recovery.So, in this present study, an artificial neural network(ANN) modeling approach was attempted for predicting the performance of wet shaking table in terms of grade(%) and recovery(%). A three layer feed forward neural network(3:3–11–2:2) was developed by varying the major operating parameters such as wash water flow rate(L/min), deck tilt angle(degree) and slurry feed rate(L/h). The predicted value obtained by the neural network model shows excellent agreement with the experimental values.
文摘The classical momentum-blade element theory is improved by using the empirical formula while part of rotor blades enters into the turbulent wake state, and the performance of a horizontal-axis wind turbine (HAWT) at all speed ratios can be predicted. By using an improved version of the so-called secant method, the convergent solutions of the system of two-dimensional equations concerning the induced velocity factors a and a' are guaranteed. Besides, a solving method of multiple solutions for a and a' is proposed and discussed. The method provided in this paper can be used for computing the aerodynamic performance of HAWTs both ofrlow solidity and of high solidity. The calculated results coincide well with the experimental data.
基金supported by the National Natural Science Foundation of China(No.21373132,No.21603133)the Education Department of Shaanxi Provincial Government Research Projects(No.16JK1142,No.16JK1134)the Scientific Research Foundation of Shaanxi University of Technology for Recruited Talents(No.SLGKYQD2-13,No.SLGKYQD2-10,No.SLGQD14-10)
文摘In this work,the photovoltaic properties of BFBPD-PC61 BM system as a promising high-performance organic solar cell(OSC) were theoretically investigated by means of quantum chemistry and molecular dynamics calculations coupled with the incoherent charge-hopping model.Moreover,the hole carrier mobility of BFBPD thin-film was also estimated with the aid of an amorphous cell including 100 BFBPD molecules.Results revealed that the BFBPD-PC61 BM system possesses a middle-sized open-circuit voltage of 0.70 V,large short-circuit current density of 17.26 mA ·cm^-2,high fill factor of 0.846,and power conversion efficiency of 10%.With the Marcus model,in the BFBPD-PC61 BM interface,the exciton-dissociation rate,kdis,was predicted to be 2.684×10^13 s^-1,which is as 3-5 orders of magnitude large as the decay(radiative and non-radiative) one(10-8-10^10s^-1),indicating a high exciton-dissociation efficiency of 100% in the BFBPD-PC61 BM interface.Furthermore,by the molecular dynamics simulation,the hole mobility of BFBPD thin-film was predicted to be as high as 1.265 × 10^-2 cm-2·V^-1·s^-1,which can be attributed to its dense packing in solid state.
基金Supported by the National Natural Science Foundation of China (40474055)
文摘This paper presents a software simulator applicable to multipath fading channels in urban environments of mobile communication networks. The simulator is constructed by a two-state Markov model and several statistical models for simulating the characterizations of different environments. A core idea of the simulator is to construct a Rice distribution-based multipath fading module produced by a modified Gans Doppler power spectrum, and in combination with a Markov model to predict the time-dependent characteristics of packet in different radio circumstances. It can simply predict the packet performance of the future channel and evaluate the relations between the radio channel and the modulation schemes, error control protocols and channel coding. Simulation results demonstrate that it is a reliable and efficient method.
文摘In order to effectively program Parallel Computing on NOW (Network of workstation),users must be able to evaluate how well the system performs for a given application.In this paper,we present an framework that can be used to evaluate tree structured computing on NOW.Based on this framework,we derive a model for the famous parallel programming paradigm divide and conquer.We discuss how this model can be used to evaluate performance and how it can be used to restructure the application to improve performance.
基金supported by the Aeronautical Science Foundation of China(Grant No.20170851007)。
文摘A model of three-level amplified spontaneous emission(ASE)sources,considering radiation effect,is proposed to predict radiation induced loss of output power in radiation environment.Radiation absorption parameters of ASE sources model are obtained by the fitting of color centers generation and recovery process of gain loss data at lower dose rate.Gain loss data at higher dose is applied for self-validating.This model takes both the influence of erbium ions absorption and photon bleaching effect into consideration,which makes the prediction of different dose and dose rate more accurate and flexible.The fitness value between ASE model and gain loss data is 99.98%,which also satisfies the extrapolation at the low dose rate.The method and model may serve as a valuable tool to predict ASE performance in harsh environment.
文摘Traditional methods for performance prediction of a turbomachinery are usually based on certain computations from a set of data obtained in limited experiment measurements of the machine, or the machinemodels. Since the computational (mathematical) models used in such performance prediction are often crude, most of the predicted results are only correct in very small ranges around the known data points. Beyond the limited ranges, the accuracy of the resultant predictions decrease abruptly. Therefore, an alternative approach, neural network technique, is studied for performance prediction of turbomachinery. The new approach has been applied to two typical performance prediction cases to verify its feasibility and reliability.