[Objective] Pericarp browning in the postharvest litchi significantly reduced its commercial value and limited the expanding of litchi markets. Physiological changes during the process of pericarp browning were determ...[Objective] Pericarp browning in the postharvest litchi significantly reduced its commercial value and limited the expanding of litchi markets. Physiological changes during the process of pericarp browning were determined in order to identify the underlying mechanisms. [Method] Matured Feizixiao fruits were stored at 25 ℃ and 70%±5% relative humidity. The physiological changes happened in pericarp during storage were tested at an 8-hour interval. [Result] The fruit of Feizixiao (Litchi chinensis Sonn. cv Feizixiao) turned completely brown within 72 h after being harvested under the experimental conditions. Sharp increase of the browning index occurred from 48 to 64 hours after harvest (HAH). With the browning of pericarp,water content of the whole fruit and pericarp decreased continuingly. In contrast,there were no significant changes in the water content of pulp during the same period. MDA content,pH value and relative leakage rate of pericarp were increased during storage. Most of pigment contents including anthocyanin,flavonoid,phenols,chlorophyll a and total chlorophyll decreased. POD activity was initially increased in 32 HAH and then decreased afterwards. PPO activity was decreased continuously,while the activities of catalase and superoxide dismutase exhibited the pattern of 'increasing-decreasing-increasing' as the storage time progressed. Correlation,stepwise regression and path analyses showed that water loss of pericarp was the major factor of pericarp browning. Principal and cluster analyses showed that there were two stages of pericarp browning during the course of litchi storage. [Conclusion] Water status of pericarp was the most important factor affecting pericarp browning. The pericarp browning happened by stages,which was mainly determined by the water loss of pericarp.展开更多
Pericarp browning is the major cause of deterioration of harvested litchi fruit.Water loss plays a role in pericarp browning of litchi fruit.This study investigated the effects of humidification with dry fog on perica...Pericarp browning is the major cause of deterioration of harvested litchi fruit.Water loss plays a role in pericarp browning of litchi fruit.This study investigated the effects of humidification with dry fog on pericarp browning and quality of litchi fruit stored at low temperature.Litchi fruit were stored in a non-humidified cold chamber(control)or in a humidified cold room using Tabor atomizer system that generated 95%relative humidity(RH)without depositing water on the fruit surface at 4℃.Control fruit stored in cold room without added humidity underwent rapid weight loss,accompanied by severe pericarp browning after 25 d of storage.However,slight weight loss and no obvious pericarp browning were found in humidified-fruit.Moreover,humidification maintained well the integrity of cell membrane and inhibited polyphenol oxidase activity during early storage.In addition,respiration rate was obviously inhibited in humidified-fruit compared with control fruit.This study might provide a convenient approach to reduce pericarp browning of harvested litchi fruit by humidifying the fruit using the Tabor atomizer at low temperature instead of packaging with film.展开更多
基金Supported by National Science Foundation of China ( GrantNo.30460085, 30960233)Open Foundation of Provincial Key Laboratory for Fruit and Vegetable Preservation of Hainan ( GrantNo. CH001)National Non-profit Institute Grant (ITBBZD2007-3-1)~~
文摘[Objective] Pericarp browning in the postharvest litchi significantly reduced its commercial value and limited the expanding of litchi markets. Physiological changes during the process of pericarp browning were determined in order to identify the underlying mechanisms. [Method] Matured Feizixiao fruits were stored at 25 ℃ and 70%±5% relative humidity. The physiological changes happened in pericarp during storage were tested at an 8-hour interval. [Result] The fruit of Feizixiao (Litchi chinensis Sonn. cv Feizixiao) turned completely brown within 72 h after being harvested under the experimental conditions. Sharp increase of the browning index occurred from 48 to 64 hours after harvest (HAH). With the browning of pericarp,water content of the whole fruit and pericarp decreased continuingly. In contrast,there were no significant changes in the water content of pulp during the same period. MDA content,pH value and relative leakage rate of pericarp were increased during storage. Most of pigment contents including anthocyanin,flavonoid,phenols,chlorophyll a and total chlorophyll decreased. POD activity was initially increased in 32 HAH and then decreased afterwards. PPO activity was decreased continuously,while the activities of catalase and superoxide dismutase exhibited the pattern of 'increasing-decreasing-increasing' as the storage time progressed. Correlation,stepwise regression and path analyses showed that water loss of pericarp was the major factor of pericarp browning. Principal and cluster analyses showed that there were two stages of pericarp browning during the course of litchi storage. [Conclusion] Water status of pericarp was the most important factor affecting pericarp browning. The pericarp browning happened by stages,which was mainly determined by the water loss of pericarp.
基金This work was supported by National Key R&D Program of China(No.2018YFD0401301)National Natural Science Foundation of China(Nos 31770726 and 31772041)+3 种基金Science and Technology Planning of Jiangsu Province(No.BZ2013004)Science and Technology Planning Project of Guangzhou(No.201804020041)Agro-scientific Research in the Public Interest(No.201303073)The work was also supported by National Botanical Gardens,CAS.
文摘Pericarp browning is the major cause of deterioration of harvested litchi fruit.Water loss plays a role in pericarp browning of litchi fruit.This study investigated the effects of humidification with dry fog on pericarp browning and quality of litchi fruit stored at low temperature.Litchi fruit were stored in a non-humidified cold chamber(control)or in a humidified cold room using Tabor atomizer system that generated 95%relative humidity(RH)without depositing water on the fruit surface at 4℃.Control fruit stored in cold room without added humidity underwent rapid weight loss,accompanied by severe pericarp browning after 25 d of storage.However,slight weight loss and no obvious pericarp browning were found in humidified-fruit.Moreover,humidification maintained well the integrity of cell membrane and inhibited polyphenol oxidase activity during early storage.In addition,respiration rate was obviously inhibited in humidified-fruit compared with control fruit.This study might provide a convenient approach to reduce pericarp browning of harvested litchi fruit by humidifying the fruit using the Tabor atomizer at low temperature instead of packaging with film.