期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Deep neural network-assisted computed tomography diagnosis of metastatic lymph nodes from gastric cancer 被引量:15
1
作者 Yuan Gao Zheng-Dong Zhang +8 位作者 Shuo Li Yu-Ting Guo Qing-Yao Wu Shu-Hao Liu Shu-Jian Yang Lei Ding Bao-Chun Zhao Shuai Li Yun Lu 《Chinese Medical Journal》 SCIE CAS CSCD 2019年第23期2804-2811,共8页
Background:Artificial intelligence-assisted image recognition technology is currently able to detect the target area of an image and fetch information to make classifications according to target features.This study ai... Background:Artificial intelligence-assisted image recognition technology is currently able to detect the target area of an image and fetch information to make classifications according to target features.This study aimed to use deep neural netAVorks for computed tomography(CT)diagnosis of perigastric metastatic lymph nodes(PGMLNs)to simulate the recognition of lymph nodes by radiologists,and to acquire more accurate identification results.Methods:A total of 1371 images of suspected lymph node metastasis from enhanced abdominal CT scans were identified and labeled by radiologists and were used with 18,780 original images for faster region-based convolutional neural networks(FR-CNN)deep learning.The identification results of 6000 random CT images from 100 gastric cancer patients by the FR-CNN were compared with results obtained from radiologists in terms of their identification accuracy.Similarly,1004 CT images with metastatic lymph nodes that had been post-operatively confirmed by pathological examination and 11,340 original images were used in the identification and learning processes described above.The same 6000 gastric cancer CT images were used for the verification,according to which the diagnosis results were analyzed.Results:In the initial group,precision-recall curves were generated based on the precision rates,the recall rates of nodule classes of the training set and the validation set;the mean average precision(mAP)value was 0.5019.To verify the results of the initial learning group,the receiver operating characteristic curves was generated,and the corresponding area under the curve(AUC)value was calculated as 0.8995.After the second phase of precise learning,all the indicators were improved,and the mAP and AUC values were 0.7801 and 0.9541,respectively.Conclusion:Through deep learning,FR-CNN achieved high judgment effectiveness and recognition accuracy for CT diagnosis of PGMLNs. 展开更多
关键词 Faster region-based convolutional neural networks perigastric metastatic lymph nodes Deep learning Gastric cancer
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部