The present study aims to delimit protection perimeters around the “Agbo” river in Agboville in order to reduce the risks of pollution of this water resource. The methodological approach consisted first all in asses...The present study aims to delimit protection perimeters around the “Agbo” river in Agboville in order to reduce the risks of pollution of this water resource. The methodological approach consisted first all in assessing the vulnerability of the resource and then in determining the protection perimeters based on the vulnerability map and previous studies. Five parameters (slope, land use, soil type, annual runoff and drainage density) were used. These parameters were then weighted using the Saaty multicriteria analysis method. The vulnerability map reveals four classes (very low, low, medium and high) with a dominance of the low class (41.35% of the area). Three protection perimeters were delineated (immediate, close and remote). The immediate protection perimeter is delimited at a distance of 200 m around the SODECI water intake on the “Agbo” river and covers the areas with a strong influence on the vulnerability to pollution of the river. The closer protection perimeter at a distance of 1000 m, is represented by the zones with strong influence on the vulnerability of the resource and the direction of water flow in the watershed. Finally, the remote protection perimeter covers a large part of the catchment area with a surface area of 510.36 km2 and takes into account the zones that have an influence on the vulnerability to pollution of the resource. These delimited protection perimeters can serve as a guide for the management and protection of the water intake in Agboville as well as for land use planning in this area.展开更多
Anti-ram bollards used in perimeter protection are tested to meet performance requirements of established standards such as the US Department of State Specification SD-STD-02.01. Under these standards, tests are condu...Anti-ram bollards used in perimeter protection are tested to meet performance requirements of established standards such as the US Department of State Specification SD-STD-02.01. Under these standards, tests are conducted in prescribed conditions that should be representative of the service installation. In actual project, conditions encountered on site may vary from the test environment and it would be expensive and time consuming to validate each deviation with a physical test. High-fidelity physics-based (HFPB) finite element modeling can provide precise simulations of the behavior of anti-ram bollards. This paper presents the use of HFPB finite element modeling, using LS-DYNA, in an actual project to evaluate the performance of an anti-ram bollard design subjected to various boundary conditions representing the physical conditions encountered on site. The study shows that boundary conditions can have a significant influence on the performance of the anti-ram bollards. This suggests that anti-ram bollards must be designed and engineered according to actual conditions that are found on site. It also shows that HFPB modeling can be an effective tool that supplements physical testing of anti-ram bollards.展开更多
文摘The present study aims to delimit protection perimeters around the “Agbo” river in Agboville in order to reduce the risks of pollution of this water resource. The methodological approach consisted first all in assessing the vulnerability of the resource and then in determining the protection perimeters based on the vulnerability map and previous studies. Five parameters (slope, land use, soil type, annual runoff and drainage density) were used. These parameters were then weighted using the Saaty multicriteria analysis method. The vulnerability map reveals four classes (very low, low, medium and high) with a dominance of the low class (41.35% of the area). Three protection perimeters were delineated (immediate, close and remote). The immediate protection perimeter is delimited at a distance of 200 m around the SODECI water intake on the “Agbo” river and covers the areas with a strong influence on the vulnerability to pollution of the river. The closer protection perimeter at a distance of 1000 m, is represented by the zones with strong influence on the vulnerability of the resource and the direction of water flow in the watershed. Finally, the remote protection perimeter covers a large part of the catchment area with a surface area of 510.36 km2 and takes into account the zones that have an influence on the vulnerability to pollution of the resource. These delimited protection perimeters can serve as a guide for the management and protection of the water intake in Agboville as well as for land use planning in this area.
文摘Anti-ram bollards used in perimeter protection are tested to meet performance requirements of established standards such as the US Department of State Specification SD-STD-02.01. Under these standards, tests are conducted in prescribed conditions that should be representative of the service installation. In actual project, conditions encountered on site may vary from the test environment and it would be expensive and time consuming to validate each deviation with a physical test. High-fidelity physics-based (HFPB) finite element modeling can provide precise simulations of the behavior of anti-ram bollards. This paper presents the use of HFPB finite element modeling, using LS-DYNA, in an actual project to evaluate the performance of an anti-ram bollard design subjected to various boundary conditions representing the physical conditions encountered on site. The study shows that boundary conditions can have a significant influence on the performance of the anti-ram bollards. This suggests that anti-ram bollards must be designed and engineered according to actual conditions that are found on site. It also shows that HFPB modeling can be an effective tool that supplements physical testing of anti-ram bollards.