This paper aims to study the stochastic period-doubling bifurcation of the three-dimensional Rossler system with an arch-like bounded random parameter. First, we transform the stochastic RSssler system into its equiva...This paper aims to study the stochastic period-doubling bifurcation of the three-dimensional Rossler system with an arch-like bounded random parameter. First, we transform the stochastic RSssler system into its equivalent deterministic one in the sense of minimal residual error by the Chebyshev polynomial approximation method. Then, we explore the dynamical behaviour of the stochastic RSssler system through its equivalent deterministic system by numerical simulations. The numerical results show that some stochastic period-doubling bifurcation, akin to the conventional one in the deterministic case, may also appear in the stochastic Rossler system. In addition, we also examine the influence of the random parameter intensity on bifurcation phenomena in the stochastic Rossler system.展开更多
The transition boundaries of period doubling on the physical parameter plane of a Duffing system are obtained by the general Newton′s method, and the motion on different areas divided by transition boundaries is stu...The transition boundaries of period doubling on the physical parameter plane of a Duffing system are obtained by the general Newton′s method, and the motion on different areas divided by transition boundaries is studied in this paper. When the physical parameters transpass the boundaries, the solutions of period T =2π/ω will lose their stability, and the solutions of period T =2π/ω take place. Continuous period doubling bifurcations lead to chaos.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No. 10872165)
文摘This paper aims to study the stochastic period-doubling bifurcation of the three-dimensional Rossler system with an arch-like bounded random parameter. First, we transform the stochastic RSssler system into its equivalent deterministic one in the sense of minimal residual error by the Chebyshev polynomial approximation method. Then, we explore the dynamical behaviour of the stochastic RSssler system through its equivalent deterministic system by numerical simulations. The numerical results show that some stochastic period-doubling bifurcation, akin to the conventional one in the deterministic case, may also appear in the stochastic Rossler system. In addition, we also examine the influence of the random parameter intensity on bifurcation phenomena in the stochastic Rossler system.
文摘The transition boundaries of period doubling on the physical parameter plane of a Duffing system are obtained by the general Newton′s method, and the motion on different areas divided by transition boundaries is studied in this paper. When the physical parameters transpass the boundaries, the solutions of period T =2π/ω will lose their stability, and the solutions of period T =2π/ω take place. Continuous period doubling bifurcations lead to chaos.