Based on the ensemble mean outputs of the ensemble forecasts from the ECMWF (European Centre for Medium-Range Weather Forecasts), JMA (Japan Meteorological Agency), NCEP (National Centers for Environmental Predic...Based on the ensemble mean outputs of the ensemble forecasts from the ECMWF (European Centre for Medium-Range Weather Forecasts), JMA (Japan Meteorological Agency), NCEP (National Centers for Environmental Prediction), and UKMO (United Kingdom Met Office) in THORPEX (The Observing System Research and Predictability Experiment) Interactive Grand Global Ensemble (TIGGE) datasets, for the Northern Hemisphere (10~ 87.5~N, 0~ 360~) from i June 2007 to 31 August 2007, this study carried out multimodel ensemble forecasts of surface temperature and 500-hPa geopotential height, temperature and winds up to 168 h by using the bias-removed ensemble mean (BREM), the multiple linear regression based superensemble (LRSUP), and the neural network based superensemble (NNSUP) techniques for the forecast period from 8 to 31 August 2007. A running training period is used for BREM and LRSUP ensemble forecast techniques. It is found that BREM and LRSUP, at each grid point, have different optimal lengths of the training period. In general, the optimal training period for BREM is less than 30 days in most areas, while for LRSUP it is about 45 days.展开更多
基金Supported by the China Meteorological Administration Special Public Welfare Research Fund (GYHY(QX)2007-6-1)National Key Basic Research and Development (973) Program of China (2012CB955204)
文摘Based on the ensemble mean outputs of the ensemble forecasts from the ECMWF (European Centre for Medium-Range Weather Forecasts), JMA (Japan Meteorological Agency), NCEP (National Centers for Environmental Prediction), and UKMO (United Kingdom Met Office) in THORPEX (The Observing System Research and Predictability Experiment) Interactive Grand Global Ensemble (TIGGE) datasets, for the Northern Hemisphere (10~ 87.5~N, 0~ 360~) from i June 2007 to 31 August 2007, this study carried out multimodel ensemble forecasts of surface temperature and 500-hPa geopotential height, temperature and winds up to 168 h by using the bias-removed ensemble mean (BREM), the multiple linear regression based superensemble (LRSUP), and the neural network based superensemble (NNSUP) techniques for the forecast period from 8 to 31 August 2007. A running training period is used for BREM and LRSUP ensemble forecast techniques. It is found that BREM and LRSUP, at each grid point, have different optimal lengths of the training period. In general, the optimal training period for BREM is less than 30 days in most areas, while for LRSUP it is about 45 days.