This paper investigates the dynamics of a TCP system described by a first- order nonlinear delay differential equation. By analyzing the associated characteristic transcendental equation, it is shown that a Hopf bifur...This paper investigates the dynamics of a TCP system described by a first- order nonlinear delay differential equation. By analyzing the associated characteristic transcendental equation, it is shown that a Hopf bifurcation sequence occurs at the pos- itive equilibrium as the delay passes through a sequence of critical values. The explicit algorithms for determining the Hopf bifurcation direction and the stability of the bifur- cating periodic solutions are derived with the normal form theory and the center manifold theory. The global existence of periodic solutions is also established with the method of Wu (Wu, J. H. Symmetric functional differential equations and neural networks with memory. Transactions of the American Mathematical Society 350(12), 4799-4838 (1998)).展开更多
This paper discusses the chaos and bifurcation for equation x+cosxx+asinx =ebsint. By use of the Melnikov method the conditions to have the chaotic behavior and to have subharmonic oscillations are given.
The mathematical model of stem cells is discussed with its motivation to describe the tissue relationship by technically introducing a two compartments model. The clear link between the proliferation phase of stem cel...The mathematical model of stem cells is discussed with its motivation to describe the tissue relationship by technically introducing a two compartments model. The clear link between the proliferation phase of stem cells and the circulating neutrophil phase is set forth after delay feedback control of the state variable of stem cells. Hopf bifurcation is discussed with varying free parameters and time delays. Based on the center manifold theory, the normal form near the critical point is computed and the stability of bifurcating periodical solution is rigorously discussed. With the aids of the artificial tool on-hand which implies how much tedious work doing by DDE-Biftool software, the bifurcating periodic solution after Hopf point is continued by varying time delay.展开更多
The transition boundaries of period doubling on the physical parameter plane of a Duffing system are obtained by the general Newton′s method, and the motion on different areas divided by transition boundaries is stu...The transition boundaries of period doubling on the physical parameter plane of a Duffing system are obtained by the general Newton′s method, and the motion on different areas divided by transition boundaries is studied in this paper. When the physical parameters transpass the boundaries, the solutions of period T =2π/ω will lose their stability, and the solutions of period T =2π/ω take place. Continuous period doubling bifurcations lead to chaos.展开更多
This paper aims to study the stochastic period-doubling bifurcation of the three-dimensional Rossler system with an arch-like bounded random parameter. First, we transform the stochastic RSssler system into its equiva...This paper aims to study the stochastic period-doubling bifurcation of the three-dimensional Rossler system with an arch-like bounded random parameter. First, we transform the stochastic RSssler system into its equivalent deterministic one in the sense of minimal residual error by the Chebyshev polynomial approximation method. Then, we explore the dynamical behaviour of the stochastic RSssler system through its equivalent deterministic system by numerical simulations. The numerical results show that some stochastic period-doubling bifurcation, akin to the conventional one in the deterministic case, may also appear in the stochastic Rossler system. In addition, we also examine the influence of the random parameter intensity on bifurcation phenomena in the stochastic Rossler system.展开更多
Phase delays between two Nino indices-sea surface temperatures in Nino regions 1+2 and 3.4 (1950-2001)-at different time scales are detected by wavelet analysis. Analysis results show that there are two types of perio...Phase delays between two Nino indices-sea surface temperatures in Nino regions 1+2 and 3.4 (1950-2001)-at different time scales are detected by wavelet analysis. Analysis results show that there are two types of period bifurcations in the Nino indices and that period bifurcation points exist only in the region where the wavelet power is small. Interdecadal variation features of phase delays between the two indices vary with different time scales. In the periods of 40-72 months, the phase delay changes its sign in 1977: Nino 1+2 indices are 2-4 months earlier than Nino 3.4 indices before 1977, but 3-6 months later afterwards. In the periods of 20-40 months, however, the phase delay changes its sign in another way: Nino 1+2 indices are 1-4 months earlier before 1980 and during 1986-90, but 1-4 months later during 1980-83 and 1993-2001.展开更多
By generalizing the Floquet method from periodic systems to systems with exponential dichotomy, a local coordinate system is established in a neighborhood of the heteroclinic loop \%Γ\% to study the bifurcation probl...By generalizing the Floquet method from periodic systems to systems with exponential dichotomy, a local coordinate system is established in a neighborhood of the heteroclinic loop \%Γ\% to study the bifurcation problems of homoclinic and periodic orbits. Asymptotic expressions of the bifurcation surfaces and their relative positions are given. The results obtained in literature concerned with the 1\|hom bifurcation surfaces are improved and extended to the nontransversal case. Existence regions of the 1\|per orbits bifurcated from Γ are described, and the uniqueness and incoexistence of the 1\|hom and 1\|per orbit and the inexistence of the 2\|hom and 2\|per orbit are also obtained.展开更多
We describe an approach to studying the center problem and local bifurcations of critical periods at infinity for a class of differential systems. We then solve the problem and investigate the bifurcations for a class...We describe an approach to studying the center problem and local bifurcations of critical periods at infinity for a class of differential systems. We then solve the problem and investigate the bifurcations for a class of rational differential systems with a cubic polynomial as its numerator.展开更多
Our work is concerned with the bifurcation of critical period for a quartic Kolmogorov system.By computing the periodic constants carefully,we show that point(1,1)can be a weak center of fourth order,and the weak cent...Our work is concerned with the bifurcation of critical period for a quartic Kolmogorov system.By computing the periodic constants carefully,we show that point(1,1)can be a weak center of fourth order,and the weak centers condition is given.Moreover,point(1,1)can bifurcate 4 critical periods under a certain condition.In terms of multiple bifurcation of critical periodic problem for Kolmogorov model,studied results are less seen,our work is good and interesting.展开更多
基金Project supported by the National Natural Science Foundation of China (Nos. 10771215 and10771094)
文摘This paper investigates the dynamics of a TCP system described by a first- order nonlinear delay differential equation. By analyzing the associated characteristic transcendental equation, it is shown that a Hopf bifurcation sequence occurs at the pos- itive equilibrium as the delay passes through a sequence of critical values. The explicit algorithms for determining the Hopf bifurcation direction and the stability of the bifur- cating periodic solutions are derived with the normal form theory and the center manifold theory. The global existence of periodic solutions is also established with the method of Wu (Wu, J. H. Symmetric functional differential equations and neural networks with memory. Transactions of the American Mathematical Society 350(12), 4799-4838 (1998)).
基金Project Supported by the National Natural Science Foundation of China
文摘This paper discusses the chaos and bifurcation for equation x+cosxx+asinx =ebsint. By use of the Melnikov method the conditions to have the chaotic behavior and to have subharmonic oscillations are given.
文摘The mathematical model of stem cells is discussed with its motivation to describe the tissue relationship by technically introducing a two compartments model. The clear link between the proliferation phase of stem cells and the circulating neutrophil phase is set forth after delay feedback control of the state variable of stem cells. Hopf bifurcation is discussed with varying free parameters and time delays. Based on the center manifold theory, the normal form near the critical point is computed and the stability of bifurcating periodical solution is rigorously discussed. With the aids of the artificial tool on-hand which implies how much tedious work doing by DDE-Biftool software, the bifurcating periodic solution after Hopf point is continued by varying time delay.
文摘The transition boundaries of period doubling on the physical parameter plane of a Duffing system are obtained by the general Newton′s method, and the motion on different areas divided by transition boundaries is studied in this paper. When the physical parameters transpass the boundaries, the solutions of period T =2π/ω will lose their stability, and the solutions of period T =2π/ω take place. Continuous period doubling bifurcations lead to chaos.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10872165)
文摘This paper aims to study the stochastic period-doubling bifurcation of the three-dimensional Rossler system with an arch-like bounded random parameter. First, we transform the stochastic RSssler system into its equivalent deterministic one in the sense of minimal residual error by the Chebyshev polynomial approximation method. Then, we explore the dynamical behaviour of the stochastic RSssler system through its equivalent deterministic system by numerical simulations. The numerical results show that some stochastic period-doubling bifurcation, akin to the conventional one in the deterministic case, may also appear in the stochastic Rossler system. In addition, we also examine the influence of the random parameter intensity on bifurcation phenomena in the stochastic Rossler system.
基金This work was supported by the National Natural Science Foundation of China under Grant No.40035010
文摘Phase delays between two Nino indices-sea surface temperatures in Nino regions 1+2 and 3.4 (1950-2001)-at different time scales are detected by wavelet analysis. Analysis results show that there are two types of period bifurcations in the Nino indices and that period bifurcation points exist only in the region where the wavelet power is small. Interdecadal variation features of phase delays between the two indices vary with different time scales. In the periods of 40-72 months, the phase delay changes its sign in 1977: Nino 1+2 indices are 2-4 months earlier than Nino 3.4 indices before 1977, but 3-6 months later afterwards. In the periods of 20-40 months, however, the phase delay changes its sign in another way: Nino 1+2 indices are 1-4 months earlier before 1980 and during 1986-90, but 1-4 months later during 1980-83 and 1993-2001.
文摘By generalizing the Floquet method from periodic systems to systems with exponential dichotomy, a local coordinate system is established in a neighborhood of the heteroclinic loop \%Γ\% to study the bifurcation problems of homoclinic and periodic orbits. Asymptotic expressions of the bifurcation surfaces and their relative positions are given. The results obtained in literature concerned with the 1\|hom bifurcation surfaces are improved and extended to the nontransversal case. Existence regions of the 1\|per orbits bifurcated from Γ are described, and the uniqueness and incoexistence of the 1\|hom and 1\|per orbit and the inexistence of the 2\|hom and 2\|per orbit are also obtained.
基金supported by the National Natural Science Foundation of China (10961011)the Slovene Human Resources and Scholarship Fundthe Slovenian Research Agency, by the Nova Kreditna Banka Maribor, by TELEKOM Slovenije and by the Transnational Access Programme at RISC-Linz of the European Commission Framework 6 Programme for Integrated Infrastructures Initiatives under the project SCIEnce (Contract No. 026133)
文摘We describe an approach to studying the center problem and local bifurcations of critical periods at infinity for a class of differential systems. We then solve the problem and investigate the bifurcations for a class of rational differential systems with a cubic polynomial as its numerator.
基金This paper is supported by National Natural Science Foundation of China(12061016)the Research Fund of Hunan provincial education department(18A525)the Hunan provincial Natural Science Foundation of China(2020JJ4630)。
文摘Our work is concerned with the bifurcation of critical period for a quartic Kolmogorov system.By computing the periodic constants carefully,we show that point(1,1)can be a weak center of fourth order,and the weak centers condition is given.Moreover,point(1,1)can bifurcate 4 critical periods under a certain condition.In terms of multiple bifurcation of critical periodic problem for Kolmogorov model,studied results are less seen,our work is good and interesting.