In this paper,we address the stability of periodic solutions of piecewise smooth periodic differential equations.By studying the Poincarémap,we give a sufficient condition to judge the stability of a periodic sol...In this paper,we address the stability of periodic solutions of piecewise smooth periodic differential equations.By studying the Poincarémap,we give a sufficient condition to judge the stability of a periodic solution.We also present examples of some applications.展开更多
In this paper we study a nonstationary Oseen model for a generalized Newtonian incompressible fluid with a time periodic condition and a multivalued,nonmonotone friction law.First,a variational formulation of the mode...In this paper we study a nonstationary Oseen model for a generalized Newtonian incompressible fluid with a time periodic condition and a multivalued,nonmonotone friction law.First,a variational formulation of the model is obtained;that is a nonlinear boundary hemivariational inequality of parabolic type for the velocity field.Then,an abstract first-order evolutionary hemivariational inequality in the framework of an evolution triple of spaces is investigated.Under mild assumptions,the nonemptiness and weak compactness of the set of periodic solutions to the abstract inequality are proven.Furthermore,a uniqueness theorem for the abstract inequality is established by using a monotonicity argument.Finally,we employ the theoretical results to examine the nonstationary Oseen model.展开更多
Qualitative methods of ordinary differential equation and Liapunov center theorem were used to study the existence of periodic solutions for higher order autonomous Birkhoff systems. For higher order autonomous Birkho...Qualitative methods of ordinary differential equation and Liapunov center theorem were used to study the existence of periodic solutions for higher order autonomous Birkhoff systems. For higher order autonomous Birkhoff systems, the character of the characteristic roots of the Fréchet derivative C was obtained. Furthermore the existence theorem of periodic solutions was obtained by using Liapunov center theorem, and an example was presented to illustrate the results.展开更多
One method to show the existence of ω-periodic system is given. This method is based on the ultimately boundedness of the solution of the systems. By using comparing theorem and discussing some one dimensional equati...One method to show the existence of ω-periodic system is given. This method is based on the ultimately boundedness of the solution of the systems. By using comparing theorem and discussing some one dimensional equations the main results are obtained.展开更多
The existence of T_periodic solutions of the nonlinear system with multiple delays is studied. By using the topological degree method, sufficient conditions are obtained for the existence of T_periodic solutions. As a...The existence of T_periodic solutions of the nonlinear system with multiple delays is studied. By using the topological degree method, sufficient conditions are obtained for the existence of T_periodic solutions. As an application, the existence of positive periodic solution for a logarithmic population model is established under some conditions.展开更多
Both the global exponential stability and the existence of periodic solutions for a class of recurrent neural networks with continuously distributed delays (RNNs) are studied. By employing the inequality α∏k=1^m ...Both the global exponential stability and the existence of periodic solutions for a class of recurrent neural networks with continuously distributed delays (RNNs) are studied. By employing the inequality α∏k=1^m bk^qk≤1/r ∑qkbk^r+1/rα^r(α≥0,bk≥0,qk〉0,with ∑k=1^m qk=r-1,r≥1, constructing suitable Lyapunov r k=l k=l functions and applying the homeomorphism theory, a family of simple and new sufficient conditions are given ensuring the global exponential stability and the existence of periodic solutions of RNNs. The results extend and improve the results of earlier publications.展开更多
For the (2 + 1)-dimensional nonlinear dispersive Boussinesq equation, by using the bifurcation theory of planar dynamical systems to study its corresponding traveling wave system, the bifurcations and phase portraits ...For the (2 + 1)-dimensional nonlinear dispersive Boussinesq equation, by using the bifurcation theory of planar dynamical systems to study its corresponding traveling wave system, the bifurcations and phase portraits of the regular system are obtained. Under different parametric conditions, various sufficient conditions to guarantee the existence of analytical and non-analytical solutions of the singular system are given by using singular traveling wave theory. For certain special cases, some explicit and exact parametric representations of traveling wave solutions are derived such as analytical periodic waves and non-analytical periodic cusp waves. Further, two-dimensional wave plots of analytical periodic solutions and non-analytical periodic cusp wave solutions are drawn to visualize the dynamics of the equation.展开更多
We consider a first order periodic system in R^(N),involving a time dependent maximal monotone operator which need not have a full domain and a multivalued perturbation.We prove the existence theorems for both the con...We consider a first order periodic system in R^(N),involving a time dependent maximal monotone operator which need not have a full domain and a multivalued perturbation.We prove the existence theorems for both the convex and nonconvex problems.We also show the existence of extremal periodic solutions and provide a strong relaxation theorem.Finally,we provide an application to nonlinear periodic control systems.展开更多
The existence of periodic solutions for a kind of generalized Liénard typed functional differential equation is studied. By means of the continuation theorem of coincidence degree theory, existence criteria are ...The existence of periodic solutions for a kind of generalized Liénard typed functional differential equation is studied. By means of the continuation theorem of coincidence degree theory, existence criteria are established for the existence of periodic solutions and some previous results are extended.展开更多
Existence criteria is established for the periodic solution of the nonlinear neutral delay differential equation x′(t)=f(t,x(t),x(t-τ 1(t)),x′(t-τ 2(t)))+p(t) by means of an abstract continuous theorem of k-set ...Existence criteria is established for the periodic solution of the nonlinear neutral delay differential equation x′(t)=f(t,x(t),x(t-τ 1(t)),x′(t-τ 2(t)))+p(t) by means of an abstract continuous theorem of k-set contractive operator and some analysis technique.展开更多
We study exact solutions to (1 + 1)-dimensional generalized Boussinesq equation with time-space dispersion term by making use of improved sub-equation method, and analyse the dynamical behavior and exact solutions of ...We study exact solutions to (1 + 1)-dimensional generalized Boussinesq equation with time-space dispersion term by making use of improved sub-equation method, and analyse the dynamical behavior and exact solutions of the sub-equation after constructing the nonlinear transformation and constraint conditions. Accordingly, we obtain twenty families of exact solutions such as analytical and singular solitons and singular periodic waves. In addition, we discuss the impact of system parameters on wave propagation.展开更多
J.Kaplan and J.Yorke's method is extended to establish the exis- tence of many and infinitely many periodic solutions for the DDEs (t) =±f(x(t-1))±f(x(t-2))and (t)=±f(x(t-1).
A periodically homoclinic solution and some rogue wave solutions of (1+1)-dimensional Boussinesq equation are obtained via the limit behavior of parameters and different polynomial functions. Besides, the mathematics ...A periodically homoclinic solution and some rogue wave solutions of (1+1)-dimensional Boussinesq equation are obtained via the limit behavior of parameters and different polynomial functions. Besides, the mathematics reasons for different spatiotemporal structures of rogue waves are analyzed using the extreme value theory of the two-variables function. The diversity of spatiotemporal structures not only depends on the disturbance parameter u0 </sub>but also has a relationship with the other parameters c<sub>0</sub>, α, β.展开更多
By means of an abstract continuation theorem, the existence criteria are established for the positive periodic solutions of a neutral functional differential equation d N d t=N(t)[a(t)-β(t)N(t)-b(t)N(t-σ(t))-c(...By means of an abstract continuation theorem, the existence criteria are established for the positive periodic solutions of a neutral functional differential equation d N d t=N(t)[a(t)-β(t)N(t)-b(t)N(t-σ(t))-c(t)N′(t-τ(t))].展开更多
This paper deals with the existence of positive periodic solutions for a kind of nonautonomous Volterra intergo-differential equations by employing the Krasnoselskii fixed point theorem. Applying the general theorems ...This paper deals with the existence of positive periodic solutions for a kind of nonautonomous Volterra intergo-differential equations by employing the Krasnoselskii fixed point theorem. Applying the general theorems established to several biomathematical models, the paper improves some previous results and obtains some new results.展开更多
In this paper, we consider the existence of three nontrivial solutions for a discrete non-linear multiparameter periodic problem involving the p-Laplacian. By using the similar method for the Dirichlet boundary value ...In this paper, we consider the existence of three nontrivial solutions for a discrete non-linear multiparameter periodic problem involving the p-Laplacian. By using the similar method for the Dirichlet boundary value problems in [C. Bonanno and P. Candito, Appl. Anal., 88(4) (2009), pp. 605-616], we construct two new strong maximum principles and obtain that the boundary value problem has three positive solutions for λ and μ in some suitable intervals. The approaches we use are the critical point theory.展开更多
This paper considers a class of ratio-dependent Holling-Taner model with infinite delay and prey harvest, which is of periodic coefficients. By means of the coincidence degree theory, a set of sufficient conditions fo...This paper considers a class of ratio-dependent Holling-Taner model with infinite delay and prey harvest, which is of periodic coefficients. By means of the coincidence degree theory, a set of sufficient conditions for the existence of at least two positive periodic solutions of this model is established.展开更多
Considering a decomposition R2N=A⊕B of R2N , we prove in this work, the existence of at least (1+dimA) geometrically distinct periodic solutions for the first-order Hamiltonian system Jx'(t)+H'(t,x(t))+e(t)=0...Considering a decomposition R2N=A⊕B of R2N , we prove in this work, the existence of at least (1+dimA) geometrically distinct periodic solutions for the first-order Hamiltonian system Jx'(t)+H'(t,x(t))+e(t)=0 when the Hamiltonian H(t,u+v) is periodic in (t,u) and its growth at infinity in v is at most like or faster than |v|a, 0≤ae is a forcing term. For the proof, we use the Least Action Principle and a Generalized Saddle Point Theorem.展开更多
In this paper, the existence of periodic solutions for a time dependent age-structured population model is studied. The averaged net reproductive number is introduced as the main parameter to determine the dynamical b...In this paper, the existence of periodic solutions for a time dependent age-structured population model is studied. The averaged net reproductive number is introduced as the main parameter to determine the dynamical behaviors of the model. The existence of a global parameterized branch of periodic solutions of the model is obtained by using the contracting mapping theorem in a periodic and continuous function space. The global stability of the trivial equilibrium is studied and a very practical stability criteria for the model is obtained. The dynamics of the linear time-periodic model is similar to that of the linear model.展开更多
Based on Mansevich-Mawhin continuation theorem and some analysis skill,some sufficient conditions for the existence of periodic solutions for mixed type p-Laplacian equation with deviating arguments are established,...Based on Mansevich-Mawhin continuation theorem and some analysis skill,some sufficient conditions for the existence of periodic solutions for mixed type p-Laplacian equation with deviating arguments are established,which are complement of previously known results.展开更多
文摘In this paper,we address the stability of periodic solutions of piecewise smooth periodic differential equations.By studying the Poincarémap,we give a sufficient condition to judge the stability of a periodic solution.We also present examples of some applications.
基金the NSF of Guangxi(2021GXNSFFA196004,GKAD23026237)the NNSF of China(12001478)+4 种基金the China Postdoctoral Science Foundation(2022M721560)the European Union’s Horizon 2020 Research and Innovation Programme under the Marie Sklodowska-Curie grant agreement No.823731 CONMECHthe National Science Center of Poland under Preludium Project(2017/25/N/ST1/00611)the Startup Project of Doctor Scientific Research of Yulin Normal University(G2020ZK07)the Ministry of Science and Higher Education of Republic of Poland(4004/GGPJII/H2020/2018/0,440328/Pn H2/2019)。
文摘In this paper we study a nonstationary Oseen model for a generalized Newtonian incompressible fluid with a time periodic condition and a multivalued,nonmonotone friction law.First,a variational formulation of the model is obtained;that is a nonlinear boundary hemivariational inequality of parabolic type for the velocity field.Then,an abstract first-order evolutionary hemivariational inequality in the framework of an evolution triple of spaces is investigated.Under mild assumptions,the nonemptiness and weak compactness of the set of periodic solutions to the abstract inequality are proven.Furthermore,a uniqueness theorem for the abstract inequality is established by using a monotonicity argument.Finally,we employ the theoretical results to examine the nonstationary Oseen model.
文摘Qualitative methods of ordinary differential equation and Liapunov center theorem were used to study the existence of periodic solutions for higher order autonomous Birkhoff systems. For higher order autonomous Birkhoff systems, the character of the characteristic roots of the Fréchet derivative C was obtained. Furthermore the existence theorem of periodic solutions was obtained by using Liapunov center theorem, and an example was presented to illustrate the results.
文摘One method to show the existence of ω-periodic system is given. This method is based on the ultimately boundedness of the solution of the systems. By using comparing theorem and discussing some one dimensional equations the main results are obtained.
文摘The existence of T_periodic solutions of the nonlinear system with multiple delays is studied. By using the topological degree method, sufficient conditions are obtained for the existence of T_periodic solutions. As an application, the existence of positive periodic solution for a logarithmic population model is established under some conditions.
文摘Both the global exponential stability and the existence of periodic solutions for a class of recurrent neural networks with continuously distributed delays (RNNs) are studied. By employing the inequality α∏k=1^m bk^qk≤1/r ∑qkbk^r+1/rα^r(α≥0,bk≥0,qk〉0,with ∑k=1^m qk=r-1,r≥1, constructing suitable Lyapunov r k=l k=l functions and applying the homeomorphism theory, a family of simple and new sufficient conditions are given ensuring the global exponential stability and the existence of periodic solutions of RNNs. The results extend and improve the results of earlier publications.
文摘For the (2 + 1)-dimensional nonlinear dispersive Boussinesq equation, by using the bifurcation theory of planar dynamical systems to study its corresponding traveling wave system, the bifurcations and phase portraits of the regular system are obtained. Under different parametric conditions, various sufficient conditions to guarantee the existence of analytical and non-analytical solutions of the singular system are given by using singular traveling wave theory. For certain special cases, some explicit and exact parametric representations of traveling wave solutions are derived such as analytical periodic waves and non-analytical periodic cusp waves. Further, two-dimensional wave plots of analytical periodic solutions and non-analytical periodic cusp wave solutions are drawn to visualize the dynamics of the equation.
基金supported by the NSFC(12071413)the Guangxi Natural Sci-ence Foundation(2023GXNSFAA026085)the European Union's Horizon 2020 Research and Innovation Programme under the Marie Sklodowska-Curie grant agreement No.823731 CONMECH。
文摘We consider a first order periodic system in R^(N),involving a time dependent maximal monotone operator which need not have a full domain and a multivalued perturbation.We prove the existence theorems for both the convex and nonconvex problems.We also show the existence of extremal periodic solutions and provide a strong relaxation theorem.Finally,we provide an application to nonlinear periodic control systems.
文摘The existence of periodic solutions for a kind of generalized Liénard typed functional differential equation is studied. By means of the continuation theorem of coincidence degree theory, existence criteria are established for the existence of periodic solutions and some previous results are extended.
文摘Existence criteria is established for the periodic solution of the nonlinear neutral delay differential equation x′(t)=f(t,x(t),x(t-τ 1(t)),x′(t-τ 2(t)))+p(t) by means of an abstract continuous theorem of k-set contractive operator and some analysis technique.
文摘We study exact solutions to (1 + 1)-dimensional generalized Boussinesq equation with time-space dispersion term by making use of improved sub-equation method, and analyse the dynamical behavior and exact solutions of the sub-equation after constructing the nonlinear transformation and constraint conditions. Accordingly, we obtain twenty families of exact solutions such as analytical and singular solitons and singular periodic waves. In addition, we discuss the impact of system parameters on wave propagation.
文摘J.Kaplan and J.Yorke's method is extended to establish the exis- tence of many and infinitely many periodic solutions for the DDEs (t) =±f(x(t-1))±f(x(t-2))and (t)=±f(x(t-1).
文摘A periodically homoclinic solution and some rogue wave solutions of (1+1)-dimensional Boussinesq equation are obtained via the limit behavior of parameters and different polynomial functions. Besides, the mathematics reasons for different spatiotemporal structures of rogue waves are analyzed using the extreme value theory of the two-variables function. The diversity of spatiotemporal structures not only depends on the disturbance parameter u0 </sub>but also has a relationship with the other parameters c<sub>0</sub>, α, β.
基金National Natural Science Foundation of China( 198710 0 5 )
文摘By means of an abstract continuation theorem, the existence criteria are established for the positive periodic solutions of a neutral functional differential equation d N d t=N(t)[a(t)-β(t)N(t)-b(t)N(t-σ(t))-c(t)N′(t-τ(t))].
基金The research supported by the National Natural Science Foundation of China.
文摘This paper deals with the existence of positive periodic solutions for a kind of nonautonomous Volterra intergo-differential equations by employing the Krasnoselskii fixed point theorem. Applying the general theorems established to several biomathematical models, the paper improves some previous results and obtains some new results.
基金Supported by NSFC(11326127,11101335)NWNULKQN-11-23the Fundamental Research Funds for the Gansu Universities
文摘In this paper, we consider the existence of three nontrivial solutions for a discrete non-linear multiparameter periodic problem involving the p-Laplacian. By using the similar method for the Dirichlet boundary value problems in [C. Bonanno and P. Candito, Appl. Anal., 88(4) (2009), pp. 605-616], we construct two new strong maximum principles and obtain that the boundary value problem has three positive solutions for λ and μ in some suitable intervals. The approaches we use are the critical point theory.
文摘This paper considers a class of ratio-dependent Holling-Taner model with infinite delay and prey harvest, which is of periodic coefficients. By means of the coincidence degree theory, a set of sufficient conditions for the existence of at least two positive periodic solutions of this model is established.
文摘Considering a decomposition R2N=A⊕B of R2N , we prove in this work, the existence of at least (1+dimA) geometrically distinct periodic solutions for the first-order Hamiltonian system Jx'(t)+H'(t,x(t))+e(t)=0 when the Hamiltonian H(t,u+v) is periodic in (t,u) and its growth at infinity in v is at most like or faster than |v|a, 0≤ae is a forcing term. For the proof, we use the Least Action Principle and a Generalized Saddle Point Theorem.
文摘In this paper, the existence of periodic solutions for a time dependent age-structured population model is studied. The averaged net reproductive number is introduced as the main parameter to determine the dynamical behaviors of the model. The existence of a global parameterized branch of periodic solutions of the model is obtained by using the contracting mapping theorem in a periodic and continuous function space. The global stability of the trivial equilibrium is studied and a very practical stability criteria for the model is obtained. The dynamics of the linear time-periodic model is similar to that of the linear model.
基金Foundation item: Supported by the Foundation of Education Department of Jiangxi Province(G J J11234) Supported by the Natural Science Foundation of Jiangxi Province(2009GQS0023) Supported by the Natural Science Foundation of Shangrao Normal University(1001)
文摘Based on Mansevich-Mawhin continuation theorem and some analysis skill,some sufficient conditions for the existence of periodic solutions for mixed type p-Laplacian equation with deviating arguments are established,which are complement of previously known results.