By introducing nonlinear frequency, using Floquet theory and referring to the characteristics of the solution when it passes through the transition boundaries, all kinds of bifurcation modes and their transition bound...By introducing nonlinear frequency, using Floquet theory and referring to the characteristics of the solution when it passes through the transition boundaries, all kinds of bifurcation modes and their transition boundaries of Duffing equation with two periodic excitations as well as the possible ways to chaos are studied in this paper.展开更多
The parametric dynamic stability of resonant beams with various parameters under periodic axial force is studied. It is assumed that the theoretical formulations are based on Euler-Bernoulli beam theory. The governing...The parametric dynamic stability of resonant beams with various parameters under periodic axial force is studied. It is assumed that the theoretical formulations are based on Euler-Bernoulli beam theory. The governing equations of motion are derived by using the Rayleigh-Ritz method and transformed into Mathieu equations, which are formed to determine the stability criterion and stability regions for parametricallyexcited linear resonant beams. An improved stability criterion is obtained using periodic Lyapunov functions. The boundary points on the stable regions are determined by using a small parameter perturbation method. Numerical results and discussion are presented to highlight the effects of beam length, axial force and damped coefficient on the stability criterion and stability regions. While some stability rules are easy to anticipate, we draw some conclusions: with the increase of damped coefficient, stable regions arise; with the decrease of beam length, the conditions of the damped coefficient arise instead. These conclusions can provide a reference for the robust design of parametricallyexcited linear resonant sensors.展开更多
A time-delayed feedback ratchet consisting of two Brownian particles interacting through the elastic spring is consid ered. The model describes the directed transport of coupled Brownian particles in an asymmetric two...A time-delayed feedback ratchet consisting of two Brownian particles interacting through the elastic spring is consid ered. The model describes the directed transport of coupled Brownian particles in an asymmetric two-well ratchet potential which can be calculated theoretically and implemented experimentally. We explore how the centre-of-mass velocity is af fected by the time delay, natural length of the spring, amplitude strength, angular frequency, external force, and the structure of the potential. It is found that the enhancement of the current can be obtained by varying the coupling strength of the delayed feedback system. When the thermal fluctuation and the harmonic potential match appropriately, directed current evolves periodically with the natural length of the spring and can achieve a higher transport coherence. Moreover, the external force and the amplitude strength can enhance the directed transport of coupled Brownian particles under certain conditions. It is expected that the polymer of large biological molecules may demonstrate a variety of novel cooperative effects in real propelling devices.展开更多
Based on the analysis of periodic equivalent control force of rolling missiles with x-rudder, the guidance loop model with direction error is established and the relationship between direction error and miss distance ...Based on the analysis of periodic equivalent control force of rolling missiles with x-rudder, the guidance loop model with direction error is established and the relationship between direction error and miss distance is analyzed. Results show that the miss distance is zero or a constant or infinite, and it is always zero when the real parts of system matrix eigenvalues decided by direction error are both positive values in an ideal system, in which all the lags are neglected. However, the miss distance gradually increases with the increase of the direction error and its variation is small when direction error is not more than 5° in the system, in which seeker lag and missile body lag are considered.展开更多
Stochastic perturbations and periodic excitations are generally regarded as sources to induce critical transitions in complex systems. However, we find that they are also able to slow down an imminent critical transit...Stochastic perturbations and periodic excitations are generally regarded as sources to induce critical transitions in complex systems. However, we find that they are also able to slow down an imminent critical transition. To illustrate this phenomenon, a periodically driven bistable eutrophication model with Gaussian white noise is introduced as a prototype class of real systems.The residence probability(RP) is presented to measure the possibility that the given system stays in the oligotrophic state versus Gaussian white noise and periodic force. Variations in the mean first passage time(MFPT) and the mean velocity(MV) of the first right-crossing process are also calculated respectively. We show that the frequency of the periodic force can increase the MFPT while reduce the MV under different control parameters. Nevertheless, the noise intensity or the amplitude may result in an increase of the RP only in the case of control parameters approaching the critical values. Furthermore, for an impending critical transition, an increase of the RP appears with the interaction between the amplitude and noise intensity or the combination of the noise intensity and frequency, while the interaction of the frequency and amplitude leads to an extension of the MFPT or a decrease of the MV. As a result, an increase of the RP and MFPT, and a decrease of the MVobtained from our results claim that it is possible to slow down an imminent critical transition via Gaussian white noise and periodic force.展开更多
In this paper we analyze the qualitative behaviour of the equation ε+q(X) +εX=bp(t), where e is a small parameter.We divide the interval of parameter b into four sets of subintervals,A, B,C and D.For bA,B or D,we di...In this paper we analyze the qualitative behaviour of the equation ε+q(X) +εX=bp(t), where e is a small parameter.We divide the interval of parameter b into four sets of subintervals,A, B,C and D.For bA,B or D,we discuss the different structures of the attractors of the equation and their stabilities.When chaotic phenomena appear,we also estimate the entropy.For bC,the set of bifurcation intervals,we analyze the bifurcating type and get a series of consequences from the results of Newhouse and Palis.展开更多
Acoustical signal transduction in the cochlea is an active process that involves nonlinear amplification and spontaneous otoacoustic emissions. Signal transduction involves individual subunits composed of globally cou...Acoustical signal transduction in the cochlea is an active process that involves nonlinear amplification and spontaneous otoacoustic emissions. Signal transduction involves individual subunits composed of globally coupled hair cells, which can be modeled as oscillators close to a Hopf bifurcation. The coupling may induce a transition toward synchronization, which in turn leads to a strong nonlinear response. In the model studied here, the synchronization transition of the subunit is discontinuous (explosive) in the absence of an external stimulus. We show that, in the presence of an external stimulus and for a coupling strength slightly lower than the critical value leading to explosive synchronization, the response of the subunit has better frequency selectivity and a larger signal-to-noise ratio. From physiological observations that subunits are themselves coupled together, we further propose a model of the complete cochlea, accounting for the ensemble of frequencies that the organ is able to detect.展开更多
By using two tri-axial ellipsoids to approximate the two asteroids,forced orbits around triangular libration points of the binary asteroid system(BAS)induced by solar radiation pressure are studied.The work is firstly...By using two tri-axial ellipsoids to approximate the two asteroids,forced orbits around triangular libration points of the binary asteroid system(BAS)induced by solar radiation pressure are studied.The work is firstly carried out in the doubly synchronous binary asteroid system(DSBAS).The results show that the amplitude of the forced periodic orbit can be large,even for small to moderate surface area-to-mass ratios of the spacecraft.The position,amplitude,and stability of these forced periodic orbits are influenced by the asteroids'non-spherical terms.Also,the stability of them may be different,depending on the Sun's motion direction w.r.t.to the BAS's orbit motion direction.This study is then generalized to the asynchronous and synchronous BAS(ABAS and SBAS,respectively).The forced orbits in the complete system are quasi-periodic orbits around the forced periodic orbit of the averaged system.展开更多
文摘By introducing nonlinear frequency, using Floquet theory and referring to the characteristics of the solution when it passes through the transition boundaries, all kinds of bifurcation modes and their transition boundaries of Duffing equation with two periodic excitations as well as the possible ways to chaos are studied in this paper.
基金Project supported by the National Natural Science Foundation of China (Grant No. 60927005)the 2012 Innovation Foundation of BUAA for PhD Graduatesthe Fundamental Research Funds for the Central Universities,China (Grant No. YWF-10-01-A17)
文摘The parametric dynamic stability of resonant beams with various parameters under periodic axial force is studied. It is assumed that the theoretical formulations are based on Euler-Bernoulli beam theory. The governing equations of motion are derived by using the Rayleigh-Ritz method and transformed into Mathieu equations, which are formed to determine the stability criterion and stability regions for parametricallyexcited linear resonant beams. An improved stability criterion is obtained using periodic Lyapunov functions. The boundary points on the stable regions are determined by using a small parameter perturbation method. Numerical results and discussion are presented to highlight the effects of beam length, axial force and damped coefficient on the stability criterion and stability regions. While some stability rules are easy to anticipate, we draw some conclusions: with the increase of damped coefficient, stable regions arise; with the decrease of beam length, the conditions of the damped coefficient arise instead. These conclusions can provide a reference for the robust design of parametricallyexcited linear resonant sensors.
基金supported by the National Natural Science Foundation of China(Grant No.11075016)the Fundamental Research Funds for the Central Universities,China(Grant No.201001)+1 种基金the Research Fund for the Doctoral Program of Higher Education,China(Grant No.20100003110007)the Science Foundation of the Educational Department of Liaoning Province,China(Grant No.L2012386)
文摘A time-delayed feedback ratchet consisting of two Brownian particles interacting through the elastic spring is consid ered. The model describes the directed transport of coupled Brownian particles in an asymmetric two-well ratchet potential which can be calculated theoretically and implemented experimentally. We explore how the centre-of-mass velocity is af fected by the time delay, natural length of the spring, amplitude strength, angular frequency, external force, and the structure of the potential. It is found that the enhancement of the current can be obtained by varying the coupling strength of the delayed feedback system. When the thermal fluctuation and the harmonic potential match appropriately, directed current evolves periodically with the natural length of the spring and can achieve a higher transport coherence. Moreover, the external force and the amplitude strength can enhance the directed transport of coupled Brownian particles under certain conditions. It is expected that the polymer of large biological molecules may demonstrate a variety of novel cooperative effects in real propelling devices.
文摘Based on the analysis of periodic equivalent control force of rolling missiles with x-rudder, the guidance loop model with direction error is established and the relationship between direction error and miss distance is analyzed. Results show that the miss distance is zero or a constant or infinite, and it is always zero when the real parts of system matrix eigenvalues decided by direction error are both positive values in an ideal system, in which all the lags are neglected. However, the miss distance gradually increases with the increase of the direction error and its variation is small when direction error is not more than 5° in the system, in which seeker lag and missile body lag are considered.
基金supported by the National Natural Science Foundation of China(Grant Nos.11772255&11872305)the Fundamental Research Funds for the Central Universities+2 种基金Shaanxi Province Project for Distinguished Young ScholarsInnovation Foundation for Doctor Dissertation of Northwestern Polytechnical Universitythe China Postdoctoral Science Foundation
文摘Stochastic perturbations and periodic excitations are generally regarded as sources to induce critical transitions in complex systems. However, we find that they are also able to slow down an imminent critical transition. To illustrate this phenomenon, a periodically driven bistable eutrophication model with Gaussian white noise is introduced as a prototype class of real systems.The residence probability(RP) is presented to measure the possibility that the given system stays in the oligotrophic state versus Gaussian white noise and periodic force. Variations in the mean first passage time(MFPT) and the mean velocity(MV) of the first right-crossing process are also calculated respectively. We show that the frequency of the periodic force can increase the MFPT while reduce the MV under different control parameters. Nevertheless, the noise intensity or the amplitude may result in an increase of the RP only in the case of control parameters approaching the critical values. Furthermore, for an impending critical transition, an increase of the RP appears with the interaction between the amplitude and noise intensity or the combination of the noise intensity and frequency, while the interaction of the frequency and amplitude leads to an extension of the MFPT or a decrease of the MV. As a result, an increase of the RP and MFPT, and a decrease of the MVobtained from our results claim that it is possible to slow down an imminent critical transition via Gaussian white noise and periodic force.
文摘In this paper we analyze the qualitative behaviour of the equation ε+q(X) +εX=bp(t), where e is a small parameter.We divide the interval of parameter b into four sets of subintervals,A, B,C and D.For bA,B or D,we discuss the different structures of the attractors of the equation and their stabilities.When chaotic phenomena appear,we also estimate the entropy.For bC,the set of bifurcation intervals,we analyze the bifurcating type and get a series of consequences from the results of Newhouse and Palis.
文摘Acoustical signal transduction in the cochlea is an active process that involves nonlinear amplification and spontaneous otoacoustic emissions. Signal transduction involves individual subunits composed of globally coupled hair cells, which can be modeled as oscillators close to a Hopf bifurcation. The coupling may induce a transition toward synchronization, which in turn leads to a strong nonlinear response. In the model studied here, the synchronization transition of the subunit is discontinuous (explosive) in the absence of an external stimulus. We show that, in the presence of an external stimulus and for a coupling strength slightly lower than the critical value leading to explosive synchronization, the response of the subunit has better frequency selectivity and a larger signal-to-noise ratio. From physiological observations that subunits are themselves coupled together, we further propose a model of the complete cochlea, accounting for the ensemble of frequencies that the organ is able to detect.
基金This work was supported by National Natural Science Foundation of China(Grant Nos.11773017,11673072).
文摘By using two tri-axial ellipsoids to approximate the two asteroids,forced orbits around triangular libration points of the binary asteroid system(BAS)induced by solar radiation pressure are studied.The work is firstly carried out in the doubly synchronous binary asteroid system(DSBAS).The results show that the amplitude of the forced periodic orbit can be large,even for small to moderate surface area-to-mass ratios of the spacecraft.The position,amplitude,and stability of these forced periodic orbits are influenced by the asteroids'non-spherical terms.Also,the stability of them may be different,depending on the Sun's motion direction w.r.t.to the BAS's orbit motion direction.This study is then generalized to the asynchronous and synchronous BAS(ABAS and SBAS,respectively).The forced orbits in the complete system are quasi-periodic orbits around the forced periodic orbit of the averaged system.