Volatile organic solvents were considered to have little influence on the synthesis of mesostructured materials through evaporation-induced self-assembly(EISA),because upon evaporation they leave the sol and hence do ...Volatile organic solvents were considered to have little influence on the synthesis of mesostructured materials through evaporation-induced self-assembly(EISA),because upon evaporation they leave the sol and hence do not interfere with the self-assembly process.We show here that the choice of solvent is crucial in the synthesis of thin films of phenylene-bridged periodic mesoporous organosilica(benzene PMO).Methanol is found to be a better solvent for the synthesis of thin films,whereas ethanol favors the formation of(HO)3Si-C6H4-Si(OH)3 crystals,the identity and structure of which is established by X-ray diffraction.A ternary reactant composition diagram is designed to visualize the relationship among multiple synthesis experiments and to guide the interpretation of experimental results and optimization of the quality of the periodic mesoporous organosilica film.Our study highlights the importance of solvent choice,a factor often neglected in EISA.We expect it to inspire researchers to explore the effect of solvent in designing the synthesis of mesoporous materials.展开更多
The integration of organic and inorganic fragments within the pore walls of the periodic mesoporous organosilicas (PMOs) represents one of the recent breakthroughs in material science. The resulting PMOs are promising...The integration of organic and inorganic fragments within the pore walls of the periodic mesoporous organosilicas (PMOs) represents one of the recent breakthroughs in material science. The resulting PMOs are promising materials for applications in such areas as catalysis, adsorption, separation and drug-delivery. We summarize here the recent progress made in the synthesis of PMOs with hierarchical structures and large functional groups, with special emphasis on the chiral mesoporous organosilicas and their potential applications as novel chiral solids in heterogeneous asymmetric catalysis.展开更多
基金the Natural Sciences and Engineering Council (NSERC) of Canada for strong and sustained support of his research
文摘Volatile organic solvents were considered to have little influence on the synthesis of mesostructured materials through evaporation-induced self-assembly(EISA),because upon evaporation they leave the sol and hence do not interfere with the self-assembly process.We show here that the choice of solvent is crucial in the synthesis of thin films of phenylene-bridged periodic mesoporous organosilica(benzene PMO).Methanol is found to be a better solvent for the synthesis of thin films,whereas ethanol favors the formation of(HO)3Si-C6H4-Si(OH)3 crystals,the identity and structure of which is established by X-ray diffraction.A ternary reactant composition diagram is designed to visualize the relationship among multiple synthesis experiments and to guide the interpretation of experimental results and optimization of the quality of the periodic mesoporous organosilica film.Our study highlights the importance of solvent choice,a factor often neglected in EISA.We expect it to inspire researchers to explore the effect of solvent in designing the synthesis of mesoporous materials.
基金supported by the National Natural Science Foundation of China (Grant No. 20621063)the National Basic Research Program of China (Grant No. 2009CB623503)
文摘The integration of organic and inorganic fragments within the pore walls of the periodic mesoporous organosilicas (PMOs) represents one of the recent breakthroughs in material science. The resulting PMOs are promising materials for applications in such areas as catalysis, adsorption, separation and drug-delivery. We summarize here the recent progress made in the synthesis of PMOs with hierarchical structures and large functional groups, with special emphasis on the chiral mesoporous organosilicas and their potential applications as novel chiral solids in heterogeneous asymmetric catalysis.