In a recent paper(Luo H et al.,2022),we found that the peak amplitudes of diurnal magnetic variations,measured during martian days(sols)at the InSight landing site,exhibited quasi Carrington-Rotation(qCR)periods at hi...In a recent paper(Luo H et al.,2022),we found that the peak amplitudes of diurnal magnetic variations,measured during martian days(sols)at the InSight landing site,exhibited quasi Carrington-Rotation(qCR)periods at higher eigenmodes of the natural orthogonal components(NOC);these results were based on~664 sols of magnetic field measurements.However,the source of these periodic variations is still unknown.In this paper we introduce the neutral-wind driven ionospheric dynamo current model(e.g.,Lillis et al.,2019)to investigate the source.Four candidates-the draped IMF,electron density/plasma density,the neutral densities,and the electron temperature in the ionosphere with artificial qCR periodicity,are applied in the modeling to find the main factor likely to be causing the observed surface magnetic field variations that exhibit the same qCR periods.Results show that the electron density/plasma density,which controls the total conductivity in the dynamo region,appears to account for the greatest part of the surface qCR variations;its contribution reaches about 67.6%.The draped IMF,the neutral densities,and the electron temperature account,respectively,for only about 12.9%,10.3%,and 9.2%of the variations.Our study implies that the qCR magnetic variations on the Martian surface are due primarily to variations of the dynamo currents caused by the electron density variations.We suggest also that the timevarying fields with the qCR period could be used to probe the Martian interior's electrical conductivity structure to a depth of at least 700 km.展开更多
Rotationally periodic symmetry is exploited in 2-D elastostatic calculation using the BEM.It is proved that the coefficient matrices of the global boundary element equations for the rotationally periodic system are bl...Rotationally periodic symmetry is exploited in 2-D elastostatic calculation using the BEM.It is proved that the coefficient matrices of the global boundary element equations for the rotationally periodic system are block-circulant so long as a kind of symmetry-adapted reference coordinate system is adopted. Furthermore,an efficient algorithm,which partitions the original problem of solving the boundary element equations into a series of subproblems,is proposed.The method permits arbitrary load distribution for stress analysis problems.展开更多
By considering the characteristics of deformation of rotationally periodic structures under rotationally periodic loads, the periodic structure is divided into some identical substructures in this study. The degrees-o...By considering the characteristics of deformation of rotationally periodic structures under rotationally periodic loads, the periodic structure is divided into some identical substructures in this study. The degrees-of-freedom (DOFs) of joint nodes between the neighboring substructures are classified as master and slave ones. The stress and strain conditions of the whole structure are obtained by solving the elastic static equations for only one substructure by introducing the displacement constraints between master and slave DOFs. The complex constraint method is used to get the bifurcation buckling load and mode for the whole rotationally periodic structure by solving the eigenvalue problem for only one substructure without introducing any additional approximation. The finite element (FE) formulation of shell element of relative degrees of freedom (SERDF) in the buckling analysis is derived. Different measures of tackling internal degrees of freedom for different kinds of buckling problems and different stages of numerical analysis are presented. Some numerical examples are given to illustrate the high efficiency and validity of this method.展开更多
The flow and heat transfer performances of horizontal spiral-coil pipes of circular and elliptical cross-sections are studied.The numerical results are compared with the experimental data,to verify the numerical metho...The flow and heat transfer performances of horizontal spiral-coil pipes of circular and elliptical cross-sections are studied.The numerical results are compared with the experimental data,to verify the numerical method.The effects of the inlet water mass flow rate,the structural parameters,the helical pitch and the radius ratio on the heat transfer performances are investigated.Performances of the secondary fluid flow with different radius ratios are also investigated.Numerical results demonstrate that the heat transfer coefficient and the Nusselt number increase with the increase of the water mass flow rate or the helical pitch.The maximum heat transfer coefficient and the maximum Nusselt number are obtained when the radius ratio is equal to 1.00.In addition,the fluid particle moves spirally along the pipe and the velocity changes periodically.The particle flow intensity and the spiral movement frequency decrease significantly with the increase of the radius ratio.Besides,the secondary flow profile in the horizontal spiral-coil pipe contains two oppositely rotating eddies,and the eddy intensity decreases significantly along the pipe owing to the change of curvature.The decreasing tendency of the eddy intensity along the pipe increases with the increase of the radius ratio.展开更多
This paper presents a new three-dimensional(3D) volume measurement approach of bubble in gas-liquid two-phase flow. According to the dual perspective imaging principle,bubble feature images can be captured from two di...This paper presents a new three-dimensional(3D) volume measurement approach of bubble in gas-liquid two-phase flow. According to the dual perspective imaging principle,bubble feature images can be captured from two different view angles. The least square ellipse fitting algorithm is used to figure out the feature parameters from the captured images. Then the 3D volume of bubble can be quantitatively measured. Compaerd with the traditional volume estimation methods based on single perspective imaging,it can effectively reduce the loss of bubble feature information. In the experiment,the 3D volume reconstruction of bubbles from dual perspective images is conducted,and the variation of bubble volume in the bubble rising process is studied. The results show that the measurement accuracy based on the proposed 3D method is higher than those based on traditional methods. The volume of rising bubble is periodically changed,which indicates that bubble achieves periodic rotation and deformation in the rising process.展开更多
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB41010304)the National Key R&D Program of China (Grant No.2018YFC1503806)the National Natural Science Foundation of China (41874080, 41674168, 41874197)
文摘In a recent paper(Luo H et al.,2022),we found that the peak amplitudes of diurnal magnetic variations,measured during martian days(sols)at the InSight landing site,exhibited quasi Carrington-Rotation(qCR)periods at higher eigenmodes of the natural orthogonal components(NOC);these results were based on~664 sols of magnetic field measurements.However,the source of these periodic variations is still unknown.In this paper we introduce the neutral-wind driven ionospheric dynamo current model(e.g.,Lillis et al.,2019)to investigate the source.Four candidates-the draped IMF,electron density/plasma density,the neutral densities,and the electron temperature in the ionosphere with artificial qCR periodicity,are applied in the modeling to find the main factor likely to be causing the observed surface magnetic field variations that exhibit the same qCR periods.Results show that the electron density/plasma density,which controls the total conductivity in the dynamo region,appears to account for the greatest part of the surface qCR variations;its contribution reaches about 67.6%.The draped IMF,the neutral densities,and the electron temperature account,respectively,for only about 12.9%,10.3%,and 9.2%of the variations.Our study implies that the qCR magnetic variations on the Martian surface are due primarily to variations of the dynamo currents caused by the electron density variations.We suggest also that the timevarying fields with the qCR period could be used to probe the Martian interior's electrical conductivity structure to a depth of at least 700 km.
文摘Rotationally periodic symmetry is exploited in 2-D elastostatic calculation using the BEM.It is proved that the coefficient matrices of the global boundary element equations for the rotationally periodic system are block-circulant so long as a kind of symmetry-adapted reference coordinate system is adopted. Furthermore,an efficient algorithm,which partitions the original problem of solving the boundary element equations into a series of subproblems,is proposed.The method permits arbitrary load distribution for stress analysis problems.
文摘By considering the characteristics of deformation of rotationally periodic structures under rotationally periodic loads, the periodic structure is divided into some identical substructures in this study. The degrees-of-freedom (DOFs) of joint nodes between the neighboring substructures are classified as master and slave ones. The stress and strain conditions of the whole structure are obtained by solving the elastic static equations for only one substructure by introducing the displacement constraints between master and slave DOFs. The complex constraint method is used to get the bifurcation buckling load and mode for the whole rotationally periodic structure by solving the eigenvalue problem for only one substructure without introducing any additional approximation. The finite element (FE) formulation of shell element of relative degrees of freedom (SERDF) in the buckling analysis is derived. Different measures of tackling internal degrees of freedom for different kinds of buckling problems and different stages of numerical analysis are presented. Some numerical examples are given to illustrate the high efficiency and validity of this method.
基金supported by the National Natural Science Foun-dation of China(Grant No.51475268)the National Key Basic Research Development Program of China(973 Program,Grant No.2007CB206903)
文摘The flow and heat transfer performances of horizontal spiral-coil pipes of circular and elliptical cross-sections are studied.The numerical results are compared with the experimental data,to verify the numerical method.The effects of the inlet water mass flow rate,the structural parameters,the helical pitch and the radius ratio on the heat transfer performances are investigated.Performances of the secondary fluid flow with different radius ratios are also investigated.Numerical results demonstrate that the heat transfer coefficient and the Nusselt number increase with the increase of the water mass flow rate or the helical pitch.The maximum heat transfer coefficient and the maximum Nusselt number are obtained when the radius ratio is equal to 1.00.In addition,the fluid particle moves spirally along the pipe and the velocity changes periodically.The particle flow intensity and the spiral movement frequency decrease significantly with the increase of the radius ratio.Besides,the secondary flow profile in the horizontal spiral-coil pipe contains two oppositely rotating eddies,and the eddy intensity decreases significantly along the pipe owing to the change of curvature.The decreasing tendency of the eddy intensity along the pipe increases with the increase of the radius ratio.
基金supported by the National Natural Science Foundation of China(Nos.61372143 and 61671321)
文摘This paper presents a new three-dimensional(3D) volume measurement approach of bubble in gas-liquid two-phase flow. According to the dual perspective imaging principle,bubble feature images can be captured from two different view angles. The least square ellipse fitting algorithm is used to figure out the feature parameters from the captured images. Then the 3D volume of bubble can be quantitatively measured. Compaerd with the traditional volume estimation methods based on single perspective imaging,it can effectively reduce the loss of bubble feature information. In the experiment,the 3D volume reconstruction of bubbles from dual perspective images is conducted,and the variation of bubble volume in the bubble rising process is studied. The results show that the measurement accuracy based on the proposed 3D method is higher than those based on traditional methods. The volume of rising bubble is periodically changed,which indicates that bubble achieves periodic rotation and deformation in the rising process.