Some nonlinear dynamic properties of axisymmetric deformation are ex- amined for a spherical membrane composed of a transversely isotropic incompressible Rivlin-Saunders material. The membrane is subjected to periodic...Some nonlinear dynamic properties of axisymmetric deformation are ex- amined for a spherical membrane composed of a transversely isotropic incompressible Rivlin-Saunders material. The membrane is subjected to periodic step loads at its inner and outer surfaces. A second-order nonlinear ordinary differential equation approximately describing radially symmetric motion of the membrane is obtained by setting the thick- ness of the spherical structure close to one. The qualitative properties of the solutions are discussed in detail. In particular, the conditions that control the nonlinear periodic oscillation of the spherical membrane are proposed. In certain cases, it is proved that the oscillating form of the spherical membrane would present a homoclinic orbit of type "∞", and the amplitude growth of the periodic oscillation is discontinuous. Numerical results are provided.展开更多
基金supported by the National Natural Science Foundation of China (Nos.10872045, 10721062,and 10772104)the Program for New Century Excellent Talents in University (No.NCET-09-0096)+1 种基金the Post-Doctoral Science Foundation of China (No.20070421049)the Fundamental Research Funds for the Central Universities (No.DC10030104)
文摘Some nonlinear dynamic properties of axisymmetric deformation are ex- amined for a spherical membrane composed of a transversely isotropic incompressible Rivlin-Saunders material. The membrane is subjected to periodic step loads at its inner and outer surfaces. A second-order nonlinear ordinary differential equation approximately describing radially symmetric motion of the membrane is obtained by setting the thick- ness of the spherical structure close to one. The qualitative properties of the solutions are discussed in detail. In particular, the conditions that control the nonlinear periodic oscillation of the spherical membrane are proposed. In certain cases, it is proved that the oscillating form of the spherical membrane would present a homoclinic orbit of type "∞", and the amplitude growth of the periodic oscillation is discontinuous. Numerical results are provided.