An important tool for the construction of periodic wavelet frame with the help of extension principles was presented in the Fourier domain by Zhang and Saito [Appl. Comput. Harmon. Anal., 2008, 125: 68-186]. We exten...An important tool for the construction of periodic wavelet frame with the help of extension principles was presented in the Fourier domain by Zhang and Saito [Appl. Comput. Harmon. Anal., 2008, 125: 68-186]. We extend their results to the dilation matrix cases in two aspects. We first show that the periodization of any wavelet frame constructed by the unitary extension principle formulated by Ron and Shen is still a periodic wavelet frame under weaker conditions than that given by Zhang and Saito, and then prove that the periodization of those generated by the mixed extension principle is also a periodic wavelet frame if the scaling functions have compact supports.展开更多
The periodic multiresolution analysis (PMRA) and the periodic frame multiresolution analysis (PFMRA) provide a general recipe for the construction of periodic wavelets and periodic wavelet frames, respectively. Th...The periodic multiresolution analysis (PMRA) and the periodic frame multiresolution analysis (PFMRA) provide a general recipe for the construction of periodic wavelets and periodic wavelet frames, respectively. This paper addresses PFMRAs by the introduction of the notion of spectrum sequence. In terms of spectrum sequences, the scaling function sequences generating a normalized PFMRA are characterized; a characterization of the spectrum sequences of PFMRAs is obtained, which provides a method to construct PFMRAs since its proof is constructive; a necessary and sufficient condition for a PFMRA to admit a single wavelet frame sequence is obtained; a necessary and sufficient condition for a PFMRA to be contained in a given PMRA is also obtained. What is more, it is proved that an arbitrary PFMRA must be contained in some PMRA. In the meanwhile, some examples are provided to illustrate the general theory.展开更多
基金Acknowledgements The authors express their gratitude to the anonymous referees for their kind suggestions and useful comments on the original manuscript, which resulted in this final version. This work was supported by the National Natural Science Foundation of China (No. 61071189), the Natural Science Foundation for the Education Department of Henan Province of China (No. 13A110072), and the Natural Science Foundation of Henan University (No. 2011YBZR001).
文摘An important tool for the construction of periodic wavelet frame with the help of extension principles was presented in the Fourier domain by Zhang and Saito [Appl. Comput. Harmon. Anal., 2008, 125: 68-186]. We extend their results to the dilation matrix cases in two aspects. We first show that the periodization of any wavelet frame constructed by the unitary extension principle formulated by Ron and Shen is still a periodic wavelet frame under weaker conditions than that given by Zhang and Saito, and then prove that the periodization of those generated by the mixed extension principle is also a periodic wavelet frame if the scaling functions have compact supports.
基金Supported by the National Natural Science Foundation of China (Grant No. 10671008)supported by the Excellent Talents Foundation of Beijing, China (20051D0501022)PHR(IHLB)+1 种基金the Project-sponsored by SRF for ROCS, SEM of Chinathe Scientific Research Foundation for the Excellent Returned Overseas Chinese Scholars, Beijing
文摘The periodic multiresolution analysis (PMRA) and the periodic frame multiresolution analysis (PFMRA) provide a general recipe for the construction of periodic wavelets and periodic wavelet frames, respectively. This paper addresses PFMRAs by the introduction of the notion of spectrum sequence. In terms of spectrum sequences, the scaling function sequences generating a normalized PFMRA are characterized; a characterization of the spectrum sequences of PFMRAs is obtained, which provides a method to construct PFMRAs since its proof is constructive; a necessary and sufficient condition for a PFMRA to admit a single wavelet frame sequence is obtained; a necessary and sufficient condition for a PFMRA to be contained in a given PMRA is also obtained. What is more, it is proved that an arbitrary PFMRA must be contained in some PMRA. In the meanwhile, some examples are provided to illustrate the general theory.