In this paper,we address the stability of periodic solutions of piecewise smooth periodic differential equations.By studying the Poincarémap,we give a sufficient condition to judge the stability of a periodic sol...In this paper,we address the stability of periodic solutions of piecewise smooth periodic differential equations.By studying the Poincarémap,we give a sufficient condition to judge the stability of a periodic solution.We also present examples of some applications.展开更多
For the (2 + 1)-dimensional nonlinear dispersive Boussinesq equation, by using the bifurcation theory of planar dynamical systems to study its corresponding traveling wave system, the bifurcations and phase portraits ...For the (2 + 1)-dimensional nonlinear dispersive Boussinesq equation, by using the bifurcation theory of planar dynamical systems to study its corresponding traveling wave system, the bifurcations and phase portraits of the regular system are obtained. Under different parametric conditions, various sufficient conditions to guarantee the existence of analytical and non-analytical solutions of the singular system are given by using singular traveling wave theory. For certain special cases, some explicit and exact parametric representations of traveling wave solutions are derived such as analytical periodic waves and non-analytical periodic cusp waves. Further, two-dimensional wave plots of analytical periodic solutions and non-analytical periodic cusp wave solutions are drawn to visualize the dynamics of the equation.展开更多
We study exact solutions to (1 + 1)-dimensional generalized Boussinesq equation with time-space dispersion term by making use of improved sub-equation method, and analyse the dynamical behavior and exact solutions of ...We study exact solutions to (1 + 1)-dimensional generalized Boussinesq equation with time-space dispersion term by making use of improved sub-equation method, and analyse the dynamical behavior and exact solutions of the sub-equation after constructing the nonlinear transformation and constraint conditions. Accordingly, we obtain twenty families of exact solutions such as analytical and singular solitons and singular periodic waves. In addition, we discuss the impact of system parameters on wave propagation.展开更多
A periodically homoclinic solution and some rogue wave solutions of (1+1)-dimensional Boussinesq equation are obtained via the limit behavior of parameters and different polynomial functions. Besides, the mathematics ...A periodically homoclinic solution and some rogue wave solutions of (1+1)-dimensional Boussinesq equation are obtained via the limit behavior of parameters and different polynomial functions. Besides, the mathematics reasons for different spatiotemporal structures of rogue waves are analyzed using the extreme value theory of the two-variables function. The diversity of spatiotemporal structures not only depends on the disturbance parameter u0 </sub>but also has a relationship with the other parameters c<sub>0</sub>, α, β.展开更多
In this paper we study a nonstationary Oseen model for a generalized Newtonian incompressible fluid with a time periodic condition and a multivalued,nonmonotone friction law.First,a variational formulation of the mode...In this paper we study a nonstationary Oseen model for a generalized Newtonian incompressible fluid with a time periodic condition and a multivalued,nonmonotone friction law.First,a variational formulation of the model is obtained;that is a nonlinear boundary hemivariational inequality of parabolic type for the velocity field.Then,an abstract first-order evolutionary hemivariational inequality in the framework of an evolution triple of spaces is investigated.Under mild assumptions,the nonemptiness and weak compactness of the set of periodic solutions to the abstract inequality are proven.Furthermore,a uniqueness theorem for the abstract inequality is established by using a monotonicity argument.Finally,we employ the theoretical results to examine the nonstationary Oseen model.展开更多
Qualitative methods of ordinary differential equation and Liapunov center theorem were used to study the existence of periodic solutions for higher order autonomous Birkhoff systems. For higher order autonomous Birkho...Qualitative methods of ordinary differential equation and Liapunov center theorem were used to study the existence of periodic solutions for higher order autonomous Birkhoff systems. For higher order autonomous Birkhoff systems, the character of the characteristic roots of the Fréchet derivative C was obtained. Furthermore the existence theorem of periodic solutions was obtained by using Liapunov center theorem, and an example was presented to illustrate the results.展开更多
One method to show the existence of ω-periodic system is given. This method is based on the ultimately boundedness of the solution of the systems. By using comparing theorem and discussing some one dimensional equati...One method to show the existence of ω-periodic system is given. This method is based on the ultimately boundedness of the solution of the systems. By using comparing theorem and discussing some one dimensional equations the main results are obtained.展开更多
Both the global exponential stability and the existence of periodic solutions for a class of recurrent neural networks with continuously distributed delays (RNNs) are studied. By employing the inequality α∏k=1^m ...Both the global exponential stability and the existence of periodic solutions for a class of recurrent neural networks with continuously distributed delays (RNNs) are studied. By employing the inequality α∏k=1^m bk^qk≤1/r ∑qkbk^r+1/rα^r(α≥0,bk≥0,qk〉0,with ∑k=1^m qk=r-1,r≥1, constructing suitable Lyapunov r k=l k=l functions and applying the homeomorphism theory, a family of simple and new sufficient conditions are given ensuring the global exponential stability and the existence of periodic solutions of RNNs. The results extend and improve the results of earlier publications.展开更多
In this paper, it is discussed the model of a kind of nonlinear differential, equation d s d t=1-s-x 1s 0δQ 2(m 1s 0sk 1+s 0s-k) d x 1 d t=x 1Q(m 1s 0sk 1+s 0s-k)-x 1-x 2m 2x 1/Qk 2+x 1/Q...In this paper, it is discussed the model of a kind of nonlinear differential, equation d s d t=1-s-x 1s 0δQ 2(m 1s 0sk 1+s 0s-k) d x 1 d t=x 1Q(m 1s 0sk 1+s 0s-k)-x 1-x 2m 2x 1/Qk 2+x 1/Q d x 2 d t=x 2Q m 2x 1/Qk 2+x 1/Q-x 2.It is proved that the system is exist at least one stable periodic solution on under the following condition:m 2x * 2(k 1δ+s 0δ-Qλ 2-x * 2) 2】m 1δk 1(k 2+Q 2λ 2) 2.Furthermore, ifm 2x * 2(k 1δ+s 0δ-Qλ 2-x * 2) 2【m 1δk 1(k 2-Q 2λ 2) 2mold true them equilibrium point (s *,x * 1,x * 2)∈ set Ω is global asymptotic stable.展开更多
Aim To discuss the existence of periodic solutions for the first boundary problem of incompressible non Newtonian fluids, a problem arising from polymer processing and concerned with the first initial boundary valu...Aim To discuss the existence of periodic solutions for the first boundary problem of incompressible non Newtonian fluids, a problem arising from polymer processing and concerned with the first initial boundary value problem of nonstationary flow of the non Newtonian viscous incompressible fluids through slit dice. Methods The monotone operator theory and Schauders fixed point theorem were used. Results and Conclusion The existence theorem of periodic solutions of a Dirichlet problem is proved under reasonable conditions.展开更多
The existence of periodic solutions for a kind of generalized Liénard typed functional differential equation is studied. By means of the continuation theorem of coincidence degree theory, existence criteria are ...The existence of periodic solutions for a kind of generalized Liénard typed functional differential equation is studied. By means of the continuation theorem of coincidence degree theory, existence criteria are established for the existence of periodic solutions and some previous results are extended.展开更多
Existence criteria is established for the periodic solution of the nonlinear neutral delay differential equation x′(t)=f(t,x(t),x(t-τ 1(t)),x′(t-τ 2(t)))+p(t) by means of an abstract continuous theorem of k-set ...Existence criteria is established for the periodic solution of the nonlinear neutral delay differential equation x′(t)=f(t,x(t),x(t-τ 1(t)),x′(t-τ 2(t)))+p(t) by means of an abstract continuous theorem of k-set contractive operator and some analysis technique.展开更多
Some properties such as oscillation, stability, existence of periodic solutions and quadratic integrability of solutions based on a class of second order nonlinear delayed systems are analyzed by using the V-function,...Some properties such as oscillation, stability, existence of periodic solutions and quadratic integrability of solutions based on a class of second order nonlinear delayed systems are analyzed by using the V-function, the Lyapunov functional or the Beuman-Bihari inequality, and some sufficient conditions based on those properties are given. Finally, the conclusions are applied to over-voltage models based on three-phase nonsynchronous closing of switches appearing in the power systems, the results in accord with the background physical meaning are obtained. And all the conditions of the conclusions are easy to validate, so the conclusions have definite theoretical meaning and are easy to apply in practice.展开更多
J.Kaplan and J.Yorke's method is extended to establish the exis- tence of many and infinitely many periodic solutions for the DDEs (t) =±f(x(t-1))±f(x(t-2))and (t)=±f(x(t-1).
By means of an abstract continuation theorem, the existence criteria are established for the positive periodic solutions of a neutral functional differential equation d N d t=N(t)[a(t)-β(t)N(t)-b(t)N(t-σ(t))-c(...By means of an abstract continuation theorem, the existence criteria are established for the positive periodic solutions of a neutral functional differential equation d N d t=N(t)[a(t)-β(t)N(t)-b(t)N(t-σ(t))-c(t)N′(t-τ(t))].展开更多
By using the continuation theorem of coincidence theory, the existence of a positive periodic solution for a two patches competition system with diffusion and time delay and functional responsex [FK(W1*3/4。*2/3]...By using the continuation theorem of coincidence theory, the existence of a positive periodic solution for a two patches competition system with diffusion and time delay and functional responsex [FK(W1*3/4。*2/3]′ 1 (t)=x 1(t)a 1(t)-b 1(t)x 1(t)-c 1(t)y(t)1+m(t)x 1(t)+D 1(t)[x 2(t)-x 1(t)], x [FK(W1*3/4。*2/3]′ 2 (t)=x 2(t)a 2(t)-b 2(t)x 2(t)-c 2(t)∫ 0 -τ k(s)x 2(t+s) d s+D 2(t)[x 1(t)-x 2(t)], y′(t)=y(t)a 3(t)-b 3(t)y(t)-c 3(t)x 1(t)1+m(t)x 1(t)is established, where a i(t),b i(t),c i(t)(i=1,2,3),m(t) and D i(t)(i=1,2) are all positive periodic continuous functions with period w >0, τ is a nonnegative constant and k(s) is a continuous nonnegative function on [- τ ,0].展开更多
This paper deals with the existence of positive periodic solutions for a kind of nonautonomous Volterra intergo-differential equations by employing the Krasnoselskii fixed point theorem. Applying the general theorems ...This paper deals with the existence of positive periodic solutions for a kind of nonautonomous Volterra intergo-differential equations by employing the Krasnoselskii fixed point theorem. Applying the general theorems established to several biomathematical models, the paper improves some previous results and obtains some new results.展开更多
The existence of high energy periodic solutions for the second-order Hamiltonian system -ü(t)+A(t)u(t)=▽F(t,u(t)) with convex and concave nonlinearities is studied, where F(t, u) = F1(t,u)+F2(t,...The existence of high energy periodic solutions for the second-order Hamiltonian system -ü(t)+A(t)u(t)=▽F(t,u(t)) with convex and concave nonlinearities is studied, where F(t, u) = F1(t,u)+F2(t,u). Under the condition that F is an even functional, infinitely many solutions for it are obtained by the variant fountain theorem. The result is a complement for some known ones in the critical point theory.展开更多
This article deals with the reflective function of the mth-order nonlinear differential systems.The results are applied to discussing the stability property of periodic solutions of these systems.
This article is concerned with the time periodic solution to the isentropic compressible Navier-Stokes equations in a periodic domain. Using an approach of parabolic regularization, we first obtain the existence of th...This article is concerned with the time periodic solution to the isentropic compressible Navier-Stokes equations in a periodic domain. Using an approach of parabolic regularization, we first obtain the existence of the time periodic solution to a regularized problem under some smallness and symmetry assumptions on the external force. The result for the original compressible Navier-Stokes equations is then obtained by a limiting process. The uniqueness of the periodic solution is also given.展开更多
文摘In this paper,we address the stability of periodic solutions of piecewise smooth periodic differential equations.By studying the Poincarémap,we give a sufficient condition to judge the stability of a periodic solution.We also present examples of some applications.
文摘For the (2 + 1)-dimensional nonlinear dispersive Boussinesq equation, by using the bifurcation theory of planar dynamical systems to study its corresponding traveling wave system, the bifurcations and phase portraits of the regular system are obtained. Under different parametric conditions, various sufficient conditions to guarantee the existence of analytical and non-analytical solutions of the singular system are given by using singular traveling wave theory. For certain special cases, some explicit and exact parametric representations of traveling wave solutions are derived such as analytical periodic waves and non-analytical periodic cusp waves. Further, two-dimensional wave plots of analytical periodic solutions and non-analytical periodic cusp wave solutions are drawn to visualize the dynamics of the equation.
文摘We study exact solutions to (1 + 1)-dimensional generalized Boussinesq equation with time-space dispersion term by making use of improved sub-equation method, and analyse the dynamical behavior and exact solutions of the sub-equation after constructing the nonlinear transformation and constraint conditions. Accordingly, we obtain twenty families of exact solutions such as analytical and singular solitons and singular periodic waves. In addition, we discuss the impact of system parameters on wave propagation.
文摘A periodically homoclinic solution and some rogue wave solutions of (1+1)-dimensional Boussinesq equation are obtained via the limit behavior of parameters and different polynomial functions. Besides, the mathematics reasons for different spatiotemporal structures of rogue waves are analyzed using the extreme value theory of the two-variables function. The diversity of spatiotemporal structures not only depends on the disturbance parameter u0 </sub>but also has a relationship with the other parameters c<sub>0</sub>, α, β.
基金the NSF of Guangxi(2021GXNSFFA196004,GKAD23026237)the NNSF of China(12001478)+4 种基金the China Postdoctoral Science Foundation(2022M721560)the European Union’s Horizon 2020 Research and Innovation Programme under the Marie Sklodowska-Curie grant agreement No.823731 CONMECHthe National Science Center of Poland under Preludium Project(2017/25/N/ST1/00611)the Startup Project of Doctor Scientific Research of Yulin Normal University(G2020ZK07)the Ministry of Science and Higher Education of Republic of Poland(4004/GGPJII/H2020/2018/0,440328/Pn H2/2019)。
文摘In this paper we study a nonstationary Oseen model for a generalized Newtonian incompressible fluid with a time periodic condition and a multivalued,nonmonotone friction law.First,a variational formulation of the model is obtained;that is a nonlinear boundary hemivariational inequality of parabolic type for the velocity field.Then,an abstract first-order evolutionary hemivariational inequality in the framework of an evolution triple of spaces is investigated.Under mild assumptions,the nonemptiness and weak compactness of the set of periodic solutions to the abstract inequality are proven.Furthermore,a uniqueness theorem for the abstract inequality is established by using a monotonicity argument.Finally,we employ the theoretical results to examine the nonstationary Oseen model.
文摘Qualitative methods of ordinary differential equation and Liapunov center theorem were used to study the existence of periodic solutions for higher order autonomous Birkhoff systems. For higher order autonomous Birkhoff systems, the character of the characteristic roots of the Fréchet derivative C was obtained. Furthermore the existence theorem of periodic solutions was obtained by using Liapunov center theorem, and an example was presented to illustrate the results.
文摘One method to show the existence of ω-periodic system is given. This method is based on the ultimately boundedness of the solution of the systems. By using comparing theorem and discussing some one dimensional equations the main results are obtained.
文摘Both the global exponential stability and the existence of periodic solutions for a class of recurrent neural networks with continuously distributed delays (RNNs) are studied. By employing the inequality α∏k=1^m bk^qk≤1/r ∑qkbk^r+1/rα^r(α≥0,bk≥0,qk〉0,with ∑k=1^m qk=r-1,r≥1, constructing suitable Lyapunov r k=l k=l functions and applying the homeomorphism theory, a family of simple and new sufficient conditions are given ensuring the global exponential stability and the existence of periodic solutions of RNNs. The results extend and improve the results of earlier publications.
文摘In this paper, it is discussed the model of a kind of nonlinear differential, equation d s d t=1-s-x 1s 0δQ 2(m 1s 0sk 1+s 0s-k) d x 1 d t=x 1Q(m 1s 0sk 1+s 0s-k)-x 1-x 2m 2x 1/Qk 2+x 1/Q d x 2 d t=x 2Q m 2x 1/Qk 2+x 1/Q-x 2.It is proved that the system is exist at least one stable periodic solution on under the following condition:m 2x * 2(k 1δ+s 0δ-Qλ 2-x * 2) 2】m 1δk 1(k 2+Q 2λ 2) 2.Furthermore, ifm 2x * 2(k 1δ+s 0δ-Qλ 2-x * 2) 2【m 1δk 1(k 2-Q 2λ 2) 2mold true them equilibrium point (s *,x * 1,x * 2)∈ set Ω is global asymptotic stable.
文摘Aim To discuss the existence of periodic solutions for the first boundary problem of incompressible non Newtonian fluids, a problem arising from polymer processing and concerned with the first initial boundary value problem of nonstationary flow of the non Newtonian viscous incompressible fluids through slit dice. Methods The monotone operator theory and Schauders fixed point theorem were used. Results and Conclusion The existence theorem of periodic solutions of a Dirichlet problem is proved under reasonable conditions.
文摘The existence of periodic solutions for a kind of generalized Liénard typed functional differential equation is studied. By means of the continuation theorem of coincidence degree theory, existence criteria are established for the existence of periodic solutions and some previous results are extended.
文摘Existence criteria is established for the periodic solution of the nonlinear neutral delay differential equation x′(t)=f(t,x(t),x(t-τ 1(t)),x′(t-τ 2(t)))+p(t) by means of an abstract continuous theorem of k-set contractive operator and some analysis technique.
文摘Some properties such as oscillation, stability, existence of periodic solutions and quadratic integrability of solutions based on a class of second order nonlinear delayed systems are analyzed by using the V-function, the Lyapunov functional or the Beuman-Bihari inequality, and some sufficient conditions based on those properties are given. Finally, the conclusions are applied to over-voltage models based on three-phase nonsynchronous closing of switches appearing in the power systems, the results in accord with the background physical meaning are obtained. And all the conditions of the conclusions are easy to validate, so the conclusions have definite theoretical meaning and are easy to apply in practice.
文摘J.Kaplan and J.Yorke's method is extended to establish the exis- tence of many and infinitely many periodic solutions for the DDEs (t) =±f(x(t-1))±f(x(t-2))and (t)=±f(x(t-1).
基金National Natural Science Foundation of China( 198710 0 5 )
文摘By means of an abstract continuation theorem, the existence criteria are established for the positive periodic solutions of a neutral functional differential equation d N d t=N(t)[a(t)-β(t)N(t)-b(t)N(t-σ(t))-c(t)N′(t-τ(t))].
文摘By using the continuation theorem of coincidence theory, the existence of a positive periodic solution for a two patches competition system with diffusion and time delay and functional responsex [FK(W1*3/4。*2/3]′ 1 (t)=x 1(t)a 1(t)-b 1(t)x 1(t)-c 1(t)y(t)1+m(t)x 1(t)+D 1(t)[x 2(t)-x 1(t)], x [FK(W1*3/4。*2/3]′ 2 (t)=x 2(t)a 2(t)-b 2(t)x 2(t)-c 2(t)∫ 0 -τ k(s)x 2(t+s) d s+D 2(t)[x 1(t)-x 2(t)], y′(t)=y(t)a 3(t)-b 3(t)y(t)-c 3(t)x 1(t)1+m(t)x 1(t)is established, where a i(t),b i(t),c i(t)(i=1,2,3),m(t) and D i(t)(i=1,2) are all positive periodic continuous functions with period w >0, τ is a nonnegative constant and k(s) is a continuous nonnegative function on [- τ ,0].
基金The research supported by the National Natural Science Foundation of China.
文摘This paper deals with the existence of positive periodic solutions for a kind of nonautonomous Volterra intergo-differential equations by employing the Krasnoselskii fixed point theorem. Applying the general theorems established to several biomathematical models, the paper improves some previous results and obtains some new results.
文摘The existence of high energy periodic solutions for the second-order Hamiltonian system -ü(t)+A(t)u(t)=▽F(t,u(t)) with convex and concave nonlinearities is studied, where F(t, u) = F1(t,u)+F2(t,u). Under the condition that F is an even functional, infinitely many solutions for it are obtained by the variant fountain theorem. The result is a complement for some known ones in the critical point theory.
基金the National Natural Science Foundation of China(1 0 1 71 0 88) and the National Natural Science Foundation of Jiangsu Educational Committee(99KJ1 1 0 0 0 5 )
文摘This article deals with the reflective function of the mth-order nonlinear differential systems.The results are applied to discussing the stability property of periodic solutions of these systems.
基金supported by the Program for New Century Excellent Talents in University of the Ministry of Education(NCET-13-0804)NSFC(11471127)+3 种基金Guangdong Natural Science Funds for Distinguished Young Scholar(2015A030306029)The Excellent Young Teachers Program of Guangdong Province(HS2015007)Pearl River S&T Nova Program of Guangzhou(2013J2200064)supported by the General Research Fund of Hong Kong,City U 104511
文摘This article is concerned with the time periodic solution to the isentropic compressible Navier-Stokes equations in a periodic domain. Using an approach of parabolic regularization, we first obtain the existence of the time periodic solution to a regularized problem under some smallness and symmetry assumptions on the external force. The result for the original compressible Navier-Stokes equations is then obtained by a limiting process. The uniqueness of the periodic solution is also given.