This paper reports a continuous-wave (CW) mid-infrared intracavity singly resonant optical parametric oscillator based on periodically poled lithium niobate (PPLN) pumped by a diode-end-pumped CW Nd:YVO4 laser. C...This paper reports a continuous-wave (CW) mid-infrared intracavity singly resonant optical parametric oscillator based on periodically poled lithium niobate (PPLN) pumped by a diode-end-pumped CW Nd:YVO4 laser. Considering the thermal lens effects, it adopted an optical ballast lens and the near-concentric cavity for better operation. At the PPLN's grating period of 28.5 μm and the temperature of 140℃, the maximum idler output power of 155 mW at 3.86 μm has been achieved when the 808 nm pump power is 8.5 W, leading to an optical-to-optical conversion efficiency of 1.82%.展开更多
A bimorph piezoelectric beam with periodically variable cross-sections is used for the vibration energy harvesting. The effects of two geometrical parameters on the first band gap of this periodic beam are investigate...A bimorph piezoelectric beam with periodically variable cross-sections is used for the vibration energy harvesting. The effects of two geometrical parameters on the first band gap of this periodic beam are investigated by the generalized differential quadrature rule (GDQR) method. The GDQR method is also used to calculate the forced vibration response of the beam and voltage of each piezoelectric layer when the beam is subject to a sinusoidal base excitation. Results obtained from the analytical method are compared with those obtained from the finite element simulation with ANSYS, and good agreement is found. The voltage output of this periodic beam over its first band gap is calculated and compared with the voltage output of the uniform piezoelectric beam. It is concluded that this periodic beam has three advantages over the uniform piezoelectric beam, i.e., generating more voltage outputs over a wide frequency range, absorbing vibration, and being less weight.展开更多
In this paper we report on a continuous-wave (CW) intracavity singly resonant optical parametric oscillator (ICSRO) based on periodically poled LiNbO3 (PPLN) pumped by a diode-end-pumped CW Nd:YVO4 laser. Consi...In this paper we report on a continuous-wave (CW) intracavity singly resonant optical parametric oscillator (ICSRO) based on periodically poled LiNbO3 (PPLN) pumped by a diode-end-pumped CW Nd:YVO4 laser. Considering the thermal lens effects and diffraction loss, an optical ballast lens and a near-concentric cavity are adopted for better operation. Through varying the grating period and the temperature, the tunable signal output from 1406 nm to 1513 nm is obtained. At a PPLN grating period of 29 pm and a temperature of 413 K, a maximum signal output power of 820 mW at 1500 nm is achieved when the 808 nm pump power is 10.9 W, leading to an optical-to-optical conversion efficiency of 7.51%.展开更多
This paper investigates shear horizontal (SH) waves propagating in a periodically layered structure that consists of piezoelectric (PE) layers perfectly bonded with piezomagnetic (PM) layers alternately. The exp...This paper investigates shear horizontal (SH) waves propagating in a periodically layered structure that consists of piezoelectric (PE) layers perfectly bonded with piezomagnetic (PM) layers alternately. The explicit dispersion relations are derived for the two cases when the propagation directions of SH waves are normal to the interface and parallel to the interface, respectively. The asymptotic expressions for dispersion relations are also given when the wave number is extremely small. Numerical results for stop band effect and phase velocity are presented for a periodic system of alternating BaTiO3 and Terfenol-D layers. The influence of volume fraction on stop band effect and dispersion behaviors is discussed and revealed.展开更多
Tunable coherent emission is generated in a single-pass, cascaded wavelength conversion process from mode-locked laser-pumped monolithic periodically poled lithium niobate(PPLN). Three ranges of wavelength, includin...Tunable coherent emission is generated in a single-pass, cascaded wavelength conversion process from mode-locked laser-pumped monolithic periodically poled lithium niobate(PPLN). Three ranges of wavelength, including visible output from 628 nm to 639 nm, near-infrared output from 797 nm to 816 nm, and mid-infrared output from 3167 nm to 3459 nm,were obtained from the monolithic PPLN, which consists of a 10-mm section for 532-nm-pumped optical parametric generation(OPG) and a 7-mm section for 1064-nm-pumped sum frequency generation(SFG). A pump-to-signal conversion efficiency of 23.4% for OPG at 50°C and a quantum efficiency of 26.2% for SFG at 200°C were obtained.展开更多
We present a weak-coupling theory of semiclassical periodically driven two-level systems. The explicit analytical approximating solution is shown to reproduce highly accurately the exact results well beyond the regime...We present a weak-coupling theory of semiclassical periodically driven two-level systems. The explicit analytical approximating solution is shown to reproduce highly accurately the exact results well beyond the regime of the rotating-wave approximation.展开更多
The relation between the Lyapunov exponent spectrum of a periodically excited non-autonomous dynamical system and the Lyapunov exponent spectrum of the corresponding autonomous system is given and the validity of the ...The relation between the Lyapunov exponent spectrum of a periodically excited non-autonomous dynamical system and the Lyapunov exponent spectrum of the corresponding autonomous system is given and the validity of the relation is verified theoretically and computationally. A direct method for calculating the Lyapunov exponent spectrum of non-autonomous dynamical systems is suggested in this paper, which makes it more convenient to calculate the Lyapunov exponent spectrum of the dynamical system periodically excited. Following the definition of the Lyapunov dimension D-L((A)) of the autonomous system, the definition of the Lyapunov dimension D-L of the non-autonomous dynamical system is also given, and the difference between them is the integer 1, namely, D-L((A)) - D-L = 1. For a quasi-periodically excited dynamical system, similar conclusions are formed.展开更多
Quasi phase matching (QPM) periodical poled LiNbO 3(PPLN) is designed and successfully fabricated to enable second harmonic generation(SHG).The samples were Z cut 0.5 mm thick and grating period is Λ=6.8 μm for the ...Quasi phase matching (QPM) periodical poled LiNbO 3(PPLN) is designed and successfully fabricated to enable second harmonic generation(SHG).The samples were Z cut 0.5 mm thick and grating period is Λ=6.8 μm for the first order QPM of continual wave λ=1.064 μm which is emitted by Nd∶YAG laser at room temperature 27 ℃. The output single pass SHG power was tested by an authorized optical system. The normalized max conversion efficiency is calculated to be 0.25 0 0(W·cm) -1 .The fabrication and parameters calculated method are introduced, and testing scheme is described in this paper. Even some ideas to improve conversion efficiency are offered.展开更多
A new method is presented to study the scattering and diffraction of plane SH-waves by periodically distributed canyons in a layered half-space. This method uses the indirect boundary element method combined with Gree...A new method is presented to study the scattering and diffraction of plane SH-waves by periodically distributed canyons in a layered half-space. This method uses the indirect boundary element method combined with Green's functions of uniformly distributed loads acting on periodically distributed inclined lines. The periodicity feature of the canyons is exploited to limit the discretization effort to a single canyon, which avoids errors induced by the truncation of the infinite boundary, and the computational complexity and the demand on memory can be significantly reduced. Furthermore, the total wave fields are decomposed into the free field and scattered field in the process of calculation, which means that the method has definite physical meaning. The implementation of the method is described in detail and its accuracy is verified. Parametric studies are performed in the frequency domain by taking periodically distributed canyons of semi-circular and semi-elliptic cross-sections as examples. Numerical results show that the dynamic responses of periodically distributed canyons can be quite different from those for a single canyon and significant dynamic interactions exist between the canyons.展开更多
It is well known that nonuniform sampling is usually needed in special signals processing. In this paper, a general method to reconstruct Nth-order periodically nonuniform sampled signals is presented which is also de...It is well known that nonuniform sampling is usually needed in special signals processing. In this paper, a general method to reconstruct Nth-order periodically nonuniform sampled signals is presented which is also developed to digital domain, and the designs of the digital filters and the synthesis system are given. This paper extends the studies of Kohlenberg, whose work concentrate on the periodically nonuniform sampling of second order, as well as the studies of A.J.Coulson, J.L.Brown, whose work deal with the problems of two-band signals’ Nth-order sampling and reconstruction.展开更多
Current exploration needs are satisfied by multisource technology,which offers low cost,high efficiency,and high precision.The delay time,which determines the separation effects of the multisource blended data,is one ...Current exploration needs are satisfied by multisource technology,which offers low cost,high efficiency,and high precision.The delay time,which determines the separation effects of the multisource blended data,is one of the most crucial parameters in the acquisition and separation of multisource data.This study uses the deblending method of multisource data based on a periodically varying cosine code and analyses the effects of the two parameters,namely,the period amplitude and period length,used in this method on the separation of the multisource blended data.Meanwhile,the obtained coherence data is used to prove the correlation between the separation of multisource data and the two parameters.Examples of synthetic and field data are adopted to demonstrate that from a qualitative perspective,increasing the amplitude of the periodic code improves the separation effect within a reasonable delay time range.When the period length varies in a suitable range,the secondary noise becomes relatively incoherent,resulting in the separation result with a higher signal-to-noise ratio(SNR).From a quantitative perspective,the significant values(Sig.)of the period amplitude and length on the SNRs are less than 0.05,verifying the correlation between the separation of multisource data and the two parameters.展开更多
The experiment on quasi-phase-matched second harmonic generation (SHG) in a channel waveguide was reported. The waveguide was made by annealed proton exchange in the periodically poled lithium niobate (PPLN) with the ...The experiment on quasi-phase-matched second harmonic generation (SHG) in a channel waveguide was reported. The waveguide was made by annealed proton exchange in the periodically poled lithium niobate (PPLN) with the period of PPLN of 14.9 μm, which was designed for cascading wavelength conversion in dense wavelength division multiplexer optical communications. The measurement results of SHG conversion efficiency as a function of fundamental wavelength at room temperature fit well to sinc^2 shape. The peak of SHG conversion efficiency was 75%·W~ -1 ·cm~ -2 as well as reported. The relationship between the center fundamental wavelength and temperature shows that SHG can be effectively tuned by the temperature in PPLN waveguide.展开更多
Using the method developed by Gurvitz [1996 Phys. Rev. B 53 15932], we obtained the Bloch-type rate equations describing the entire system of a periodically driving qubit monitored by a quantum point contact detector....Using the method developed by Gurvitz [1996 Phys. Rev. B 53 15932], we obtained the Bloch-type rate equations describing the entire system of a periodically driving qubit monitored by a quantum point contact detector. The results demonstrate that the isolated qubit can be kept in its initial state with a large driving frequency due to more difficult electron tunneling in qubit, and this initial state can always be measured at a small measurement-induced decoherence rate during a short time.展开更多
The Ti-doped waveguide-type periodically poled LiNbO_(3)(PPLN)were fabricated and the dependence of domain wall velocity on an external field applied for domain inversion was investigated.The whole polarization revers...The Ti-doped waveguide-type periodically poled LiNbO_(3)(PPLN)were fabricated and the dependence of domain wall velocity on an external field applied for domain inversion was investigated.The whole polarization reversal process was computer-controlled to regulate domain wall expansion at a feedback time shorter than 5μs.The coercive voltage and several values of excess voltage were applied on 500μm-thick wafers serially connected to a 1-MOhm external resistor which had an effect of the poling current reduction,i.e.the deceleration of domain wall expansion.The domain wall velocity is sensitive to the poling voltage,precisely speaking,to the excess voltage.The domain wall velocities were 28.70,16.02 and 5.75μm·s^(-1)under poling field of 23.5,22.0 and 21.0 kV·mm^(-1),respectively.Moreover,average duty cycle of PPLN is about 49.93%.展开更多
We present an approximate analytical solution to periodically driven two-level system in the weak-coupling regime. The analytical solution is in good agreement with the exact numerical solution in resonance and near r...We present an approximate analytical solution to periodically driven two-level system in the weak-coupling regime. The analytical solution is in good agreement with the exact numerical solution in resonance and near resonance cases when Ω 〈 0.3ωa with Ω and ωa denoting the Rabi and transition frequencies respectively.展开更多
In this paper a high-repetition-rate mid-infrared (mid-IR) optical parametric oscillator based on periodically poled MgO-doped LiNbO3 (PPMgLN) at room temperature was demonstrated. The maximum average mid-IR outpu...In this paper a high-repetition-rate mid-infrared (mid-IR) optical parametric oscillator based on periodically poled MgO-doped LiNbO3 (PPMgLN) at room temperature was demonstrated. The maximum average mid-IR output power at 3.63μm was 1.02 W with the repetition rate of 60kHz and corresponding efficiency from the pump to the idler was 26.7%. The temperature tuning and the period tuning characteristics were also discussed.展开更多
The temperature dependency of a 5-mo1% MgO-doped periodically poled lithium niobate waveguide was investi- gated in this paper. We started with the temperature-dependent refractive index equation for the waveguide. Se...The temperature dependency of a 5-mo1% MgO-doped periodically poled lithium niobate waveguide was investi- gated in this paper. We started with the temperature-dependent refractive index equation for the waveguide. Secondly, the temperature dependency of the second harmonic generation effect was experimentally researched under different temperatures and pump powers. The quasi-phase matched wavelengths, efficiency bandwidths and peak efficiencies of the waveguide were measured. The experimental results agreed with theoretical simulations, which are indispensable in the following all-optical sampling studies based on the cascaded second harmonic generation/difference-frequency generation process in the current device.展开更多
This paper demonstrates a compact efficient optical parametric generator internal to a Q-switched dlode-endpumped Nd:YVO4 laser with periodically poled MgO:LiNbO3(PPMgLN). With the Q-switch set at a repetition rat...This paper demonstrates a compact efficient optical parametric generator internal to a Q-switched dlode-endpumped Nd:YVO4 laser with periodically poled MgO:LiNbO3(PPMgLN). With the Q-switch set at a repetition rate of 25kHz and the PPMgLN crystal operated at room temperature (25℃), the intracavity optical parametric generator threshold was reached as a diode pump power of 0.9 W. A maximum signal output power of 0.34 W with a pulse width of 25 ns and a beam quality factor of 1.4 was obtained at an incident diode power of 3.4 W, leading to a conversion efficiency of 10% with a slope efficiency of 14.4%. By varying the crystal temperature from 25 to 200℃, the output signal wavelengths were tuned in range of 1506-1565 nm. Over a 30-minutes interval, the instability of the signal power was measured to be less than 1%. In addition, the threshold pump intensity for the intracavity optical parametric generator is theoretically investigated, and the obtained result is in good agreement with the experimental results.展开更多
By Liapunov reducibility theorem, the periodically time-varying vibration system can be transformed to a linear time-invariant system. Based on the dynamic characteristics of the linear time-invariant system, the mode...By Liapunov reducibility theorem, the periodically time-varying vibration system can be transformed to a linear time-invariant system. Based on the dynamic characteristics of the linear time-invariant system, the mode of the periodically time-varying vibration system has been discussed. The paper defines the mode and analyzes its characteristics. It can be found that the mode of the periodically time-varying system is periodically time-varing but has such characteristics as orthogonality. Finally, a method is given to solve the mode. By solving the eigenvalues and the eigenvectors of the state transition matrix in one period, the periodically time-varying mode can be obtained.展开更多
The problem of optimal linear estimation of the functional Aξ =10^∞a(t)ζ((t)dt depending on the unknown values of periodically correlated stochastic process ζ(t) from observations of this process for t 〈 0...The problem of optimal linear estimation of the functional Aξ =10^∞a(t)ζ((t)dt depending on the unknown values of periodically correlated stochastic process ζ(t) from observations of this process for t 〈 0 is considered. Formulas that determine the greatest value of mean square error and the minimax estimation for the functional are proposed for the given class of admissible processes. It is shown that one-sided moving average stationary sequence gives the greatest value of the mean square error.展开更多
基金Project supported in part by the National Natural Science Foundation of China (Grant Nos 10474071, 60637010, 60671036 and60278001)Tianjin Applied Fundamental Research Project, China (07JCZDJC05900)
文摘This paper reports a continuous-wave (CW) mid-infrared intracavity singly resonant optical parametric oscillator based on periodically poled lithium niobate (PPLN) pumped by a diode-end-pumped CW Nd:YVO4 laser. Considering the thermal lens effects, it adopted an optical ballast lens and the near-concentric cavity for better operation. At the PPLN's grating period of 28.5 μm and the temperature of 140℃, the maximum idler output power of 155 mW at 3.86 μm has been achieved when the 808 nm pump power is 8.5 W, leading to an optical-to-optical conversion efficiency of 1.82%.
文摘A bimorph piezoelectric beam with periodically variable cross-sections is used for the vibration energy harvesting. The effects of two geometrical parameters on the first band gap of this periodic beam are investigated by the generalized differential quadrature rule (GDQR) method. The GDQR method is also used to calculate the forced vibration response of the beam and voltage of each piezoelectric layer when the beam is subject to a sinusoidal base excitation. Results obtained from the analytical method are compared with those obtained from the finite element simulation with ANSYS, and good agreement is found. The voltage output of this periodic beam over its first band gap is calculated and compared with the voltage output of the uniform piezoelectric beam. It is concluded that this periodic beam has three advantages over the uniform piezoelectric beam, i.e., generating more voltage outputs over a wide frequency range, absorbing vibration, and being less weight.
基金Project supported partly by the National Natural Science Foundation of China (Grant Nos 60637010 and 60671036)the National Basic Research Program of China (Grant No 2007CB310403)the Tianjin Applied Fundamental Research Project, China(Grant No 07JCZDJC05900)
文摘In this paper we report on a continuous-wave (CW) intracavity singly resonant optical parametric oscillator (ICSRO) based on periodically poled LiNbO3 (PPLN) pumped by a diode-end-pumped CW Nd:YVO4 laser. Considering the thermal lens effects and diffraction loss, an optical ballast lens and a near-concentric cavity are adopted for better operation. Through varying the grating period and the temperature, the tunable signal output from 1406 nm to 1513 nm is obtained. At a PPLN grating period of 29 pm and a temperature of 413 K, a maximum signal output power of 820 mW at 1500 nm is achieved when the 808 nm pump power is 10.9 W, leading to an optical-to-optical conversion efficiency of 7.51%.
基金supported by the National Natural Science Foundation of China (Nos.10672108,10572069 and 10820101048)
文摘This paper investigates shear horizontal (SH) waves propagating in a periodically layered structure that consists of piezoelectric (PE) layers perfectly bonded with piezomagnetic (PM) layers alternately. The explicit dispersion relations are derived for the two cases when the propagation directions of SH waves are normal to the interface and parallel to the interface, respectively. The asymptotic expressions for dispersion relations are also given when the wave number is extremely small. Numerical results for stop band effect and phase velocity are presented for a periodic system of alternating BaTiO3 and Terfenol-D layers. The influence of volume fraction on stop band effect and dispersion behaviors is discussed and revealed.
基金Project supported by the National Basic Research Program of China(Grant No.2013CB632704)
文摘Tunable coherent emission is generated in a single-pass, cascaded wavelength conversion process from mode-locked laser-pumped monolithic periodically poled lithium niobate(PPLN). Three ranges of wavelength, including visible output from 628 nm to 639 nm, near-infrared output from 797 nm to 816 nm, and mid-infrared output from 3167 nm to 3459 nm,were obtained from the monolithic PPLN, which consists of a 10-mm section for 532-nm-pumped optical parametric generation(OPG) and a 7-mm section for 1064-nm-pumped sum frequency generation(SFG). A pump-to-signal conversion efficiency of 23.4% for OPG at 50°C and a quantum efficiency of 26.2% for SFG at 200°C were obtained.
基金The project supported by National Natural Science Foundation of China under Grant Nos. 10575040, 90503010, 60478029, and 10634060, and by the State Key Basic Research Program under Grant No. 2005CB724508
文摘We present a weak-coupling theory of semiclassical periodically driven two-level systems. The explicit analytical approximating solution is shown to reproduce highly accurately the exact results well beyond the regime of the rotating-wave approximation.
基金the National Natural Science Foundation of China(No.19772027)the Science Foundation of Shanghai Municipal Commission of Education(99A01)the Science Foundation of Shanghai Municipal Commission of Science and Technology(No.98JC14032)
文摘The relation between the Lyapunov exponent spectrum of a periodically excited non-autonomous dynamical system and the Lyapunov exponent spectrum of the corresponding autonomous system is given and the validity of the relation is verified theoretically and computationally. A direct method for calculating the Lyapunov exponent spectrum of non-autonomous dynamical systems is suggested in this paper, which makes it more convenient to calculate the Lyapunov exponent spectrum of the dynamical system periodically excited. Following the definition of the Lyapunov dimension D-L((A)) of the autonomous system, the definition of the Lyapunov dimension D-L of the non-autonomous dynamical system is also given, and the difference between them is the integer 1, namely, D-L((A)) - D-L = 1. For a quasi-periodically excited dynamical system, similar conclusions are formed.
文摘Quasi phase matching (QPM) periodical poled LiNbO 3(PPLN) is designed and successfully fabricated to enable second harmonic generation(SHG).The samples were Z cut 0.5 mm thick and grating period is Λ=6.8 μm for the first order QPM of continual wave λ=1.064 μm which is emitted by Nd∶YAG laser at room temperature 27 ℃. The output single pass SHG power was tested by an authorized optical system. The normalized max conversion efficiency is calculated to be 0.25 0 0(W·cm) -1 .The fabrication and parameters calculated method are introduced, and testing scheme is described in this paper. Even some ideas to improve conversion efficiency are offered.
基金National Natural Science Foundation of China under grant Nos.51578373 and 51578372
文摘A new method is presented to study the scattering and diffraction of plane SH-waves by periodically distributed canyons in a layered half-space. This method uses the indirect boundary element method combined with Green's functions of uniformly distributed loads acting on periodically distributed inclined lines. The periodicity feature of the canyons is exploited to limit the discretization effort to a single canyon, which avoids errors induced by the truncation of the infinite boundary, and the computational complexity and the demand on memory can be significantly reduced. Furthermore, the total wave fields are decomposed into the free field and scattered field in the process of calculation, which means that the method has definite physical meaning. The implementation of the method is described in detail and its accuracy is verified. Parametric studies are performed in the frequency domain by taking periodically distributed canyons of semi-circular and semi-elliptic cross-sections as examples. Numerical results show that the dynamic responses of periodically distributed canyons can be quite different from those for a single canyon and significant dynamic interactions exist between the canyons.
文摘It is well known that nonuniform sampling is usually needed in special signals processing. In this paper, a general method to reconstruct Nth-order periodically nonuniform sampled signals is presented which is also developed to digital domain, and the designs of the digital filters and the synthesis system are given. This paper extends the studies of Kohlenberg, whose work concentrate on the periodically nonuniform sampling of second order, as well as the studies of A.J.Coulson, J.L.Brown, whose work deal with the problems of two-band signals’ Nth-order sampling and reconstruction.
基金supported by the National Key Research and Development Program of China(2018YFA0702503)the National Natural Science Foundation of China(41674122).
文摘Current exploration needs are satisfied by multisource technology,which offers low cost,high efficiency,and high precision.The delay time,which determines the separation effects of the multisource blended data,is one of the most crucial parameters in the acquisition and separation of multisource data.This study uses the deblending method of multisource data based on a periodically varying cosine code and analyses the effects of the two parameters,namely,the period amplitude and period length,used in this method on the separation of the multisource blended data.Meanwhile,the obtained coherence data is used to prove the correlation between the separation of multisource data and the two parameters.Examples of synthetic and field data are adopted to demonstrate that from a qualitative perspective,increasing the amplitude of the periodic code improves the separation effect within a reasonable delay time range.When the period length varies in a suitable range,the secondary noise becomes relatively incoherent,resulting in the separation result with a higher signal-to-noise ratio(SNR).From a quantitative perspective,the significant values(Sig.)of the period amplitude and length on the SNRs are less than 0.05,verifying the correlation between the separation of multisource data and the two parameters.
基金The National Natural Science Foundation ofChina (No 60477016)Shanghai MunicipalEducation Commission"Shu Guang"Project
文摘The experiment on quasi-phase-matched second harmonic generation (SHG) in a channel waveguide was reported. The waveguide was made by annealed proton exchange in the periodically poled lithium niobate (PPLN) with the period of PPLN of 14.9 μm, which was designed for cascading wavelength conversion in dense wavelength division multiplexer optical communications. The measurement results of SHG conversion efficiency as a function of fundamental wavelength at room temperature fit well to sinc^2 shape. The peak of SHG conversion efficiency was 75%·W~ -1 ·cm~ -2 as well as reported. The relationship between the center fundamental wavelength and temperature shows that SHG can be effectively tuned by the temperature in PPLN waveguide.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10775091)
文摘Using the method developed by Gurvitz [1996 Phys. Rev. B 53 15932], we obtained the Bloch-type rate equations describing the entire system of a periodically driving qubit monitored by a quantum point contact detector. The results demonstrate that the isolated qubit can be kept in its initial state with a large driving frequency due to more difficult electron tunneling in qubit, and this initial state can always be measured at a small measurement-induced decoherence rate during a short time.
文摘The Ti-doped waveguide-type periodically poled LiNbO_(3)(PPLN)were fabricated and the dependence of domain wall velocity on an external field applied for domain inversion was investigated.The whole polarization reversal process was computer-controlled to regulate domain wall expansion at a feedback time shorter than 5μs.The coercive voltage and several values of excess voltage were applied on 500μm-thick wafers serially connected to a 1-MOhm external resistor which had an effect of the poling current reduction,i.e.the deceleration of domain wall expansion.The domain wall velocity is sensitive to the poling voltage,precisely speaking,to the excess voltage.The domain wall velocities were 28.70,16.02 and 5.75μm·s^(-1)under poling field of 23.5,22.0 and 21.0 kV·mm^(-1),respectively.Moreover,average duty cycle of PPLN is about 49.93%.
基金The project supported by the Postdoctoral Science Foundation of China under Grant Nos.20060408878 and 2007RS4015Key Science Research Foundation of the Education Ministry of China,Natural Science Foundation of Hunan Province of China under Grant No.05JJ40007Key Science Research Foundation of the Education Department of Hunan Province under Grant No.07A057
文摘We present an approximate analytical solution to periodically driven two-level system in the weak-coupling regime. The analytical solution is in good agreement with the exact numerical solution in resonance and near resonance cases when Ω 〈 0.3ωa with Ω and ωa denoting the Rabi and transition frequencies respectively.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 60637010 and 10471071)the Ministry of Education of China+1 种基金the National Research Foundation for the Doctoral Program of Ministry of Education of China (Grant No20040056010)Tianjin Application Bases and Advanced Technology Plan (Grant No 07JCYBJC06200)
文摘In this paper a high-repetition-rate mid-infrared (mid-IR) optical parametric oscillator based on periodically poled MgO-doped LiNbO3 (PPMgLN) at room temperature was demonstrated. The maximum average mid-IR output power at 3.63μm was 1.02 W with the repetition rate of 60kHz and corresponding efficiency from the pump to the idler was 26.7%. The temperature tuning and the period tuning characteristics were also discussed.
基金supported by the National Natural Science Foundation of China (Grant Nos. 60777024 and 60978007)
文摘The temperature dependency of a 5-mo1% MgO-doped periodically poled lithium niobate waveguide was investi- gated in this paper. We started with the temperature-dependent refractive index equation for the waveguide. Secondly, the temperature dependency of the second harmonic generation effect was experimentally researched under different temperatures and pump powers. The quasi-phase matched wavelengths, efficiency bandwidths and peak efficiencies of the waveguide were measured. The experimental results agreed with theoretical simulations, which are indispensable in the following all-optical sampling studies based on the cascaded second harmonic generation/difference-frequency generation process in the current device.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10474071 and 60671036)
文摘This paper demonstrates a compact efficient optical parametric generator internal to a Q-switched dlode-endpumped Nd:YVO4 laser with periodically poled MgO:LiNbO3(PPMgLN). With the Q-switch set at a repetition rate of 25kHz and the PPMgLN crystal operated at room temperature (25℃), the intracavity optical parametric generator threshold was reached as a diode pump power of 0.9 W. A maximum signal output power of 0.34 W with a pulse width of 25 ns and a beam quality factor of 1.4 was obtained at an incident diode power of 3.4 W, leading to a conversion efficiency of 10% with a slope efficiency of 14.4%. By varying the crystal temperature from 25 to 200℃, the output signal wavelengths were tuned in range of 1506-1565 nm. Over a 30-minutes interval, the instability of the signal power was measured to be less than 1%. In addition, the threshold pump intensity for the intracavity optical parametric generator is theoretically investigated, and the obtained result is in good agreement with the experimental results.
文摘By Liapunov reducibility theorem, the periodically time-varying vibration system can be transformed to a linear time-invariant system. Based on the dynamic characteristics of the linear time-invariant system, the mode of the periodically time-varying vibration system has been discussed. The paper defines the mode and analyzes its characteristics. It can be found that the mode of the periodically time-varying system is periodically time-varing but has such characteristics as orthogonality. Finally, a method is given to solve the mode. By solving the eigenvalues and the eigenvectors of the state transition matrix in one period, the periodically time-varying mode can be obtained.
文摘The problem of optimal linear estimation of the functional Aξ =10^∞a(t)ζ((t)dt depending on the unknown values of periodically correlated stochastic process ζ(t) from observations of this process for t 〈 0 is considered. Formulas that determine the greatest value of mean square error and the minimax estimation for the functional are proposed for the given class of admissible processes. It is shown that one-sided moving average stationary sequence gives the greatest value of the mean square error.