To examine the effects of Cerebrolysin on the treatment of diabetic peripheral neuropathy, we first established a mouse model of type 2 diabetes mellitus by administering a high-glucose, high-fat diet and a single int...To examine the effects of Cerebrolysin on the treatment of diabetic peripheral neuropathy, we first established a mouse model of type 2 diabetes mellitus by administering a high-glucose, high-fat diet and a single intraperitoneal injection of streptozotocin. Mice defined as diabetic in this model were then treated with 1.80, 5.39 or 8.98 m L/kg of Cerebrolysin via intraperitoneal injections for 10 consecutive days. Our results demonstrated that the number, diameter and area of myelinated nerve fibers increased in the sciatic nerves of these mice after administration of Cerebrolysin. The results of several behavioral tests showed that Cerebrolysin dose-dependently increased the slope angle in the inclined plane test(indicating an improved ability to maintain body position), prolonged tail-flick latency and foot-licking time(indicating enhanced sensitivity to thermal and chemical pain, respectively, and reduced pain thresholds), and increased an index of sciatic nerve function in diabetic mice compared with those behavioral results in untreated diabetic mice. Taken together, the anatomical and functional results suggest that Cerebrolysin ameliorated peripheral neuropathy in a mouse model of type 2 diabetes mellitus.展开更多
Surgical accuracy has greatly improved with the advent of microsurgical techniques. However, complete functional recovery after peripheral nerve injury has not been achieved to date. The mechanisms hindering accurate ...Surgical accuracy has greatly improved with the advent of microsurgical techniques. However, complete functional recovery after peripheral nerve injury has not been achieved to date. The mechanisms hindering accurate regeneration of damaged axons after peripheral nerve injury are in urgent need of exploration. The present study was designed to explore the mechanisms of peripheral nerve regeneration after different types of injury. Femoral nerves of rats were injured by crushing or freezing. At 2, 3, 6, and 12 weeks after injury, axons were retrogradely labeled using 1,1′-dioctadecyl-3,3,3′,3′-tetramethylindocarbocyanine perchlorate(Dil) and True Blue, and motor and sensory axons that had regenerated at the site of injury were counted. The number and percentage of Dil-labeled neurons in the anterior horn of the spinal cord increased over time. No significant differences were found in the number of labeled neurons between the freeze and crush injury groups at any time point. Our results confirmed that the accuracy of peripheral nerve regeneration increased with time, after both crush and freeze injury, and indicated that axonal regeneration accuracy was still satisfactory after freezing, despite the prolonged damage.展开更多
文摘To examine the effects of Cerebrolysin on the treatment of diabetic peripheral neuropathy, we first established a mouse model of type 2 diabetes mellitus by administering a high-glucose, high-fat diet and a single intraperitoneal injection of streptozotocin. Mice defined as diabetic in this model were then treated with 1.80, 5.39 or 8.98 m L/kg of Cerebrolysin via intraperitoneal injections for 10 consecutive days. Our results demonstrated that the number, diameter and area of myelinated nerve fibers increased in the sciatic nerves of these mice after administration of Cerebrolysin. The results of several behavioral tests showed that Cerebrolysin dose-dependently increased the slope angle in the inclined plane test(indicating an improved ability to maintain body position), prolonged tail-flick latency and foot-licking time(indicating enhanced sensitivity to thermal and chemical pain, respectively, and reduced pain thresholds), and increased an index of sciatic nerve function in diabetic mice compared with those behavioral results in untreated diabetic mice. Taken together, the anatomical and functional results suggest that Cerebrolysin ameliorated peripheral neuropathy in a mouse model of type 2 diabetes mellitus.
基金supported by the National Natural Science Foundation of China,No.81360194a grant from the National Basic Research Program of China,No.2014CB542200
文摘Surgical accuracy has greatly improved with the advent of microsurgical techniques. However, complete functional recovery after peripheral nerve injury has not been achieved to date. The mechanisms hindering accurate regeneration of damaged axons after peripheral nerve injury are in urgent need of exploration. The present study was designed to explore the mechanisms of peripheral nerve regeneration after different types of injury. Femoral nerves of rats were injured by crushing or freezing. At 2, 3, 6, and 12 weeks after injury, axons were retrogradely labeled using 1,1′-dioctadecyl-3,3,3′,3′-tetramethylindocarbocyanine perchlorate(Dil) and True Blue, and motor and sensory axons that had regenerated at the site of injury were counted. The number and percentage of Dil-labeled neurons in the anterior horn of the spinal cord increased over time. No significant differences were found in the number of labeled neurons between the freeze and crush injury groups at any time point. Our results confirmed that the accuracy of peripheral nerve regeneration increased with time, after both crush and freeze injury, and indicated that axonal regeneration accuracy was still satisfactory after freezing, despite the prolonged damage.