Oil wells on the North Slope of Alaska pass through deep deposits of permafrost. The heat transferred during their operation causes localized thawing, resulting in ground subsidence adjacent to the well casings. This ...Oil wells on the North Slope of Alaska pass through deep deposits of permafrost. The heat transferred during their operation causes localized thawing, resulting in ground subsidence adjacent to the well casings. This subsidence has a damaging effect, causing the casings to compress, deform, and potentially fail. This paper presents the results of a laboratory study of the thaw consolidation strain of deep permafrost and its predictive modeling. Tests were performed to determine strains due to thaw and post-thaw loading, as well as soil index properties. Results, together with data from an earlier testing program, were used to produce empirical models for predicting strains and ground subsidence. Four distinct strain cases were analyzed with three models by multiple regression analyses, and the best-fitting model was selected for each case. Models were further compared in a ground subsidence prediction using a shared subsurface profile. Laboratory results indicate that strains due to thaw and post-thaw testing in deep core permafrost are insensitive to depth and are more strongly influenced by stress redistributions and the presence of ice lenses and inclusions. Modeling results show that the most statistically valid and useful models were those constructed using moisture content, porosity, and degree of saturation. The applicability of these models was validated by comparison with results from Finite Element modeling.展开更多
Recent years have seen a large number of high-speed railways built and will be built in seasonal frozen soil regions ot China. Although high-speed railways are characterized by being fast, comfortable and safe, higher...Recent years have seen a large number of high-speed railways built and will be built in seasonal frozen soil regions ot China. Although high-speed railways are characterized by being fast, comfortable and safe, higher standards for defor- mation of the railways' frozen subgrade are required. Meanwhile, changes in subgrade soil temperatures are the main factors affecting the deformation of frozen subgrade. Therefore, this paper selected typical test subgrade sections of the Harbin-Qiqihar Line, a special line for passenger transport built in the deep seasonal frozen soil regions of China, to monitor field temperatures. Also, the temperature changing laws of railways' subgrade in this region was analyzed by using testing data, the aim of which is to provide a technical support for future design and construction of buildings and structures in a deep seasonal frozen soil region.展开更多
文摘Oil wells on the North Slope of Alaska pass through deep deposits of permafrost. The heat transferred during their operation causes localized thawing, resulting in ground subsidence adjacent to the well casings. This subsidence has a damaging effect, causing the casings to compress, deform, and potentially fail. This paper presents the results of a laboratory study of the thaw consolidation strain of deep permafrost and its predictive modeling. Tests were performed to determine strains due to thaw and post-thaw loading, as well as soil index properties. Results, together with data from an earlier testing program, were used to produce empirical models for predicting strains and ground subsidence. Four distinct strain cases were analyzed with three models by multiple regression analyses, and the best-fitting model was selected for each case. Models were further compared in a ground subsidence prediction using a shared subsurface profile. Laboratory results indicate that strains due to thaw and post-thaw testing in deep core permafrost are insensitive to depth and are more strongly influenced by stress redistributions and the presence of ice lenses and inclusions. Modeling results show that the most statistically valid and useful models were those constructed using moisture content, porosity, and degree of saturation. The applicability of these models was validated by comparison with results from Finite Element modeling.
基金supported by the scientific research test of China Railway Corporation(Z2013-038)the National Natural Science Foundation of China(Nos.51208320 and 51178281)the Key Subject of China Railway Corporation(Nos.2014G003-F and 2014G005)
文摘Recent years have seen a large number of high-speed railways built and will be built in seasonal frozen soil regions ot China. Although high-speed railways are characterized by being fast, comfortable and safe, higher standards for defor- mation of the railways' frozen subgrade are required. Meanwhile, changes in subgrade soil temperatures are the main factors affecting the deformation of frozen subgrade. Therefore, this paper selected typical test subgrade sections of the Harbin-Qiqihar Line, a special line for passenger transport built in the deep seasonal frozen soil regions of China, to monitor field temperatures. Also, the temperature changing laws of railways' subgrade in this region was analyzed by using testing data, the aim of which is to provide a technical support for future design and construction of buildings and structures in a deep seasonal frozen soil region.