The freezing-thawing variation of permafrost active layer increases the complexity of rainfall-runoff processes in alpine river basins,Northwest China.And alpine meadow is the prominent ecosystem in these basins.This ...The freezing-thawing variation of permafrost active layer increases the complexity of rainfall-runoff processes in alpine river basins,Northwest China.And alpine meadow is the prominent ecosystem in these basins.This study selected a small alpine meadow watershed in the upper reaches of the Shule River Basin,China.We investigated alpine rainfall-runoff processes,as well as impacts of summer thaw depth of active layer,soil temperature and moisture variation on streamflow based on in-situ observations from July 2015 to December 2020.Some hydrologic parameters or indices were calculated using statistical methods,and impacts of permafrost change on river runoff were assessed using the variable infiltration capacity model(VIC).In the alpine meadow,surface soil(0–10 cm depth)of the active layer starts to freeze in mid-October each year,and begins to thaw in early April.Also,the deeper soil(70–80 cm depth)of the active layer starts to freeze in late October,and begins to thaw in late June.Moisture content in shallow soils fluctuates regularly,whereas deeper soils are more stable,and their response to rainstorms is negligible.During active layer thawing,the moisture content increases with soil depth.In the alpine meadow,vertical infiltration only occurred in soils up to 40 cm deep,and lateral flow occurred in0–20 and 60–80 cm deep soils at current rainfall intensity.Summer runoff ratios were 0.06–0.31,and runoff floods show lags of 9.5–23.0 h following the rainfall event in the study area.The freeze–thaw process also significantly impacts runoff regression coefficients,which were 0.0088–0.0654 per hour.Recession coefficient decrease negatively correlates with active layer thawing depth in summer and autumn.Alpine river basin permafrost can effectively increase peak discharge and reduce low flow.These findings are highly significant for rainfall–runoff conversion research in alpine areas of inland rivers.展开更多
The Qinghai-Tibet Plateau(QTP)distributes the largest extent of high-altitude mountain permafrost in the world(Zou et al.,2017),which has different characteristics from high-latitude permafrost(Yang et al.,2010)and st...The Qinghai-Tibet Plateau(QTP)distributes the largest extent of high-altitude mountain permafrost in the world(Zou et al.,2017),which has different characteristics from high-latitude permafrost(Yang et al.,2010)and stores massive soil carbon.展开更多
Against the background of climate change, alpine permafrost active layers have shown a gradual thickening trend and the hydrothermal conditions have undergone significant changes in the Tianshan Mountains and the Qing...Against the background of climate change, alpine permafrost active layers have shown a gradual thickening trend and the hydrothermal conditions have undergone significant changes in the Tianshan Mountains and the Qinghai-Tibet Plateau, China. At the ice-free cirque basins in the headwaters of the Urumqi River (hereafter referred to as the Ice-Free Cirque) in eastern Tianshan, China, the hydrological effects of the alpine permafrost active layers appear to have also exhibited sig- nificant changes recently. The increasing trend of local precipitation is clear in May and June. The onset of winter and spring snowmelt runoff clearly lags behind increases of air temperature, and the runoff peak appears near the beginning of the melting season, which results in the spring rtmoff increasing. In summer, runoff decreases strongly and the maximum runoff occurs earlier. In our analysis of meteorological and hydrologic data from 1959 to 2010, the runoffand precipitation changes are significantly correlated. In the initial stage of runoff, the runoff-producing process is mainly under the control of the soil water content and soil temperature in the 0-30 cm active layers. Spring precipitation and snowmelt water are mainly involved in the processes of infiltration and evaporation while some melt water infiltrates into the seasonal thawed layer and stays above the frozen layers. During the strong ablation period in summer, the runoff-generating process is mainly controlled by soil water content in the active layers deeper than 60 cm. In the active layer, precipitation and sea- sonal snowmelt water infiltrates, migrates, collects, and then forms runoff.展开更多
Ground temperatures from four of the seven extensively studied highway cross-sections near Gulkana/Glennallen,Alaska during 1954;962,were chosen to better understand the impacts of highway construction on warm permafr...Ground temperatures from four of the seven extensively studied highway cross-sections near Gulkana/Glennallen,Alaska during 1954;962,were chosen to better understand the impacts of highway construction on warm permafrost.Both the thawing of permafrost and seasonal frost action impacted on road surface stability for about 6 years until the maximum summer thaw reached about 3 m in depth.Seasonal frost action caused most of the ensuing stability problems.Unusually warm summers and the lengths of time required to re-freeze the active layer were far more important than the average annual air temperatures in determining the temperatures of the underlying shallow permafrost,or the development of taliks.The hypothesized climate warming would slightly and gradually deepen the active layer and the developed under-lying talik,but its effect would be obscured by unusually warm summers,by warmer than usual winters,and by the vari-able lengths of time of the zero curtains.At least one period of climate mini-cooling in the deeper permafrost during the early 20th century was noted.展开更多
Permafrost is one of the key components of terrestrial ecosystem in cold regions. In the context of climate change, few studies have investigated resilience of social ecological system(SER) from the perspective of per...Permafrost is one of the key components of terrestrial ecosystem in cold regions. In the context of climate change, few studies have investigated resilience of social ecological system(SER) from the perspective of permafrost that restricts the hydrothermal condition of alpine grassland ecosystem. In this paper, based on the structural dynamics, we developed the numerical model for the SER in the permafrost regions of the source of Yangtze and Yellow Rivers, analyzed the spatial-temporal characteristics and sensitivity of the SER, and estimated the effect of permafrost change on the SER. The results indicate that: 1) the SER has an increasing trend, especially after 1997, which is the joint effect of precipitation, temperature, NPP and ecological conservation projects; 2) the SER shows the spatial feature of high in southeast and low in northwest,which is consistent with the variation trends of high southeast and low northwest for the precipitation, temperature and NPP, and low southeast and high northwest for the altitude; 3) the high sensitive regions of SER to the permafrost change have gradually transited from the island distribution to zonal and planar distribution since 1980, moreover, the sensitive degree has gradually reduced; relatively, the sensitivity has high value in the north and south, and low value in the south and east; 4) the thickness of permafrost active layer shows a highly negative correlation with the SER. The contribution rate of permafrost change to the SER is-4.3%, that is, once the thickness of permafrost active layer increases 1 unit, the SER would decrease 0.04 units.展开更多
Knowledge of the spatial distribution of permafrost and the effects of climate on ground temperature are important for land use and infrastructure development on the Qinghai-Tibet Plateau(QTP). Different permafrost mo...Knowledge of the spatial distribution of permafrost and the effects of climate on ground temperature are important for land use and infrastructure development on the Qinghai-Tibet Plateau(QTP). Different permafrost models have been developed to simulate the ground temperature and active layer thickness(ALT). In this study, Temperature at Top of Permafrost(TTOP) model, Kudryavtsev model and modified Stefan solution were evaluated against detailed field measurements at four distinct field sites in the Wudaoliang Basin to better understand the applicability of permafrost models. Field data from 2012 to 2014 showed that there were notable differences in observed ground temperatures and ALTs within and among the sites. The TTOP model is relatively simple, however, when driven by averaged input values, it produced more accurate permafrost surface temperature(Tps) than the Kudryavtsev model. The modified Stefan solution resulted in a satisfactory accuracy of 90%, which was better than the Kudryavtsev model for estimating ALTs. The modified Stefan solution had the potential of being applied to climate-change studies in the future. Furthermore, additional field investigations over longer periods focusing on hydrology, which has significant influence on permafrost thaw, are necessary. These efforts should employ advanced measurement techniques to obtain adequate and extensive local parameters that will help improve model accuracy.展开更多
In the numerical simulation of long-term subgrade temperature fields, the daily variation of soil temperature at a certain depth h is negligible. Such phenomenon is called the "boundary layer theory." Depth h is def...In the numerical simulation of long-term subgrade temperature fields, the daily variation of soil temperature at a certain depth h is negligible. Such phenomenon is called the "boundary layer theory." Depth h is defined as the boundary layer thickness and the soil temperature at h is approximately equal to a temperature increment plus the average atmosphere temperature. In the past, the boundary layer thickness and temperature increment were usually extracted from monitored data in the field. In this paper, a method is proposed to determinate the boundary layer thickness and temperature incre- ment. Based on the typical designs of highway or railway, the theoretical solution of boundary layer thickness is inferred and listed. Further, the empirical equation and design chart for determining the temperature increment are given in which the following factors are addressed, including solar radiation, equivalent thermal diffusivity and convective heat-transfer coefficient. Using these equations or design charts, the boundary layer thickness and temperature increment can be easily determined and used in the simulation of long-term subgrade temperature fields. Finally, an example is conducted and used to verify the method. The result shows that the proposed method for determining the upper thermal boundary of subgrade is accurate and practical.展开更多
基金supported by the National Key R&D Program of China(2021YFC3201102-02)the National Natural Science Foundation of China(Grant No.42171028,41877156,and 41730751)+1 种基金the State Key Laboratory of Frozen Soil Engineering Foundation(SKLFSE202110)the Science and Technology Program of Gansu Province,China(20JR5RA545)。
文摘The freezing-thawing variation of permafrost active layer increases the complexity of rainfall-runoff processes in alpine river basins,Northwest China.And alpine meadow is the prominent ecosystem in these basins.This study selected a small alpine meadow watershed in the upper reaches of the Shule River Basin,China.We investigated alpine rainfall-runoff processes,as well as impacts of summer thaw depth of active layer,soil temperature and moisture variation on streamflow based on in-situ observations from July 2015 to December 2020.Some hydrologic parameters or indices were calculated using statistical methods,and impacts of permafrost change on river runoff were assessed using the variable infiltration capacity model(VIC).In the alpine meadow,surface soil(0–10 cm depth)of the active layer starts to freeze in mid-October each year,and begins to thaw in early April.Also,the deeper soil(70–80 cm depth)of the active layer starts to freeze in late October,and begins to thaw in late June.Moisture content in shallow soils fluctuates regularly,whereas deeper soils are more stable,and their response to rainstorms is negligible.During active layer thawing,the moisture content increases with soil depth.In the alpine meadow,vertical infiltration only occurred in soils up to 40 cm deep,and lateral flow occurred in0–20 and 60–80 cm deep soils at current rainfall intensity.Summer runoff ratios were 0.06–0.31,and runoff floods show lags of 9.5–23.0 h following the rainfall event in the study area.The freeze–thaw process also significantly impacts runoff regression coefficients,which were 0.0088–0.0654 per hour.Recession coefficient decrease negatively correlates with active layer thawing depth in summer and autumn.Alpine river basin permafrost can effectively increase peak discharge and reduce low flow.These findings are highly significant for rainfall–runoff conversion research in alpine areas of inland rivers.
基金financially supported by the National Natural Science Foundation of China(41871064)the Second Tibetan Plateau Scientific Expedition and Research Program(2019QZKK0304)。
文摘The Qinghai-Tibet Plateau(QTP)distributes the largest extent of high-altitude mountain permafrost in the world(Zou et al.,2017),which has different characteristics from high-latitude permafrost(Yang et al.,2010)and stores massive soil carbon.
基金supported by the Natural Science Foundation of China(Nos.41271035 and 41201060)Chinese Academy of Sciences and the National Scientific and Technological Support Projects(KJZD-EW-G03-04,2013BAB05B03)
文摘Against the background of climate change, alpine permafrost active layers have shown a gradual thickening trend and the hydrothermal conditions have undergone significant changes in the Tianshan Mountains and the Qinghai-Tibet Plateau, China. At the ice-free cirque basins in the headwaters of the Urumqi River (hereafter referred to as the Ice-Free Cirque) in eastern Tianshan, China, the hydrological effects of the alpine permafrost active layers appear to have also exhibited sig- nificant changes recently. The increasing trend of local precipitation is clear in May and June. The onset of winter and spring snowmelt runoff clearly lags behind increases of air temperature, and the runoff peak appears near the beginning of the melting season, which results in the spring rtmoff increasing. In summer, runoff decreases strongly and the maximum runoff occurs earlier. In our analysis of meteorological and hydrologic data from 1959 to 2010, the runoffand precipitation changes are significantly correlated. In the initial stage of runoff, the runoff-producing process is mainly under the control of the soil water content and soil temperature in the 0-30 cm active layers. Spring precipitation and snowmelt water are mainly involved in the processes of infiltration and evaporation while some melt water infiltrates into the seasonal thawed layer and stays above the frozen layers. During the strong ablation period in summer, the runoff-generating process is mainly controlled by soil water content in the active layers deeper than 60 cm. In the active layer, precipitation and sea- sonal snowmelt water infiltrates, migrates, collects, and then forms runoff.
文摘Ground temperatures from four of the seven extensively studied highway cross-sections near Gulkana/Glennallen,Alaska during 1954;962,were chosen to better understand the impacts of highway construction on warm permafrost.Both the thawing of permafrost and seasonal frost action impacted on road surface stability for about 6 years until the maximum summer thaw reached about 3 m in depth.Seasonal frost action caused most of the ensuing stability problems.Unusually warm summers and the lengths of time required to re-freeze the active layer were far more important than the average annual air temperatures in determining the temperatures of the underlying shallow permafrost,or the development of taliks.The hypothesized climate warming would slightly and gradually deepen the active layer and the developed under-lying talik,but its effect would be obscured by unusually warm summers,by warmer than usual winters,and by the vari-able lengths of time of the zero curtains.At least one period of climate mini-cooling in the deeper permafrost during the early 20th century was noted.
基金supported by grants from the National Natural Science Foundation of China (Grant No. 41571523, and Grant No. 41661144038)the National Basic Research Program of China(Grant No. 2013CBA01808)the National Key Technology R&D Program of the Ministry of Science and Technology of China (Grant No. 2014BAC05B01)
文摘Permafrost is one of the key components of terrestrial ecosystem in cold regions. In the context of climate change, few studies have investigated resilience of social ecological system(SER) from the perspective of permafrost that restricts the hydrothermal condition of alpine grassland ecosystem. In this paper, based on the structural dynamics, we developed the numerical model for the SER in the permafrost regions of the source of Yangtze and Yellow Rivers, analyzed the spatial-temporal characteristics and sensitivity of the SER, and estimated the effect of permafrost change on the SER. The results indicate that: 1) the SER has an increasing trend, especially after 1997, which is the joint effect of precipitation, temperature, NPP and ecological conservation projects; 2) the SER shows the spatial feature of high in southeast and low in northwest,which is consistent with the variation trends of high southeast and low northwest for the precipitation, temperature and NPP, and low southeast and high northwest for the altitude; 3) the high sensitive regions of SER to the permafrost change have gradually transited from the island distribution to zonal and planar distribution since 1980, moreover, the sensitive degree has gradually reduced; relatively, the sensitivity has high value in the north and south, and low value in the south and east; 4) the thickness of permafrost active layer shows a highly negative correlation with the SER. The contribution rate of permafrost change to the SER is-4.3%, that is, once the thickness of permafrost active layer increases 1 unit, the SER would decrease 0.04 units.
基金funded by the State Key Development Program of Basic Research of China(973 Plan,Grant No.2012CB026101)the National Science and Technology Support Plan(Grant Nos.2014BAG05B01,2014BAG05B05)
文摘Knowledge of the spatial distribution of permafrost and the effects of climate on ground temperature are important for land use and infrastructure development on the Qinghai-Tibet Plateau(QTP). Different permafrost models have been developed to simulate the ground temperature and active layer thickness(ALT). In this study, Temperature at Top of Permafrost(TTOP) model, Kudryavtsev model and modified Stefan solution were evaluated against detailed field measurements at four distinct field sites in the Wudaoliang Basin to better understand the applicability of permafrost models. Field data from 2012 to 2014 showed that there were notable differences in observed ground temperatures and ALTs within and among the sites. The TTOP model is relatively simple, however, when driven by averaged input values, it produced more accurate permafrost surface temperature(Tps) than the Kudryavtsev model. The modified Stefan solution resulted in a satisfactory accuracy of 90%, which was better than the Kudryavtsev model for estimating ALTs. The modified Stefan solution had the potential of being applied to climate-change studies in the future. Furthermore, additional field investigations over longer periods focusing on hydrology, which has significant influence on permafrost thaw, are necessary. These efforts should employ advanced measurement techniques to obtain adequate and extensive local parameters that will help improve model accuracy.
基金supported by the National Natural Science Foundation of China (Nos. 51378057, 41371081, and 41171064)the National Key Basic Research Program of China (973 Program, No. 2012CB026104)
文摘In the numerical simulation of long-term subgrade temperature fields, the daily variation of soil temperature at a certain depth h is negligible. Such phenomenon is called the "boundary layer theory." Depth h is defined as the boundary layer thickness and the soil temperature at h is approximately equal to a temperature increment plus the average atmosphere temperature. In the past, the boundary layer thickness and temperature increment were usually extracted from monitored data in the field. In this paper, a method is proposed to determinate the boundary layer thickness and temperature incre- ment. Based on the typical designs of highway or railway, the theoretical solution of boundary layer thickness is inferred and listed. Further, the empirical equation and design chart for determining the temperature increment are given in which the following factors are addressed, including solar radiation, equivalent thermal diffusivity and convective heat-transfer coefficient. Using these equations or design charts, the boundary layer thickness and temperature increment can be easily determined and used in the simulation of long-term subgrade temperature fields. Finally, an example is conducted and used to verify the method. The result shows that the proposed method for determining the upper thermal boundary of subgrade is accurate and practical.