Despite being within the intertropical region of the planet,the Mexican territory still has glacier-covered mountains.In recent decades,important advances have been made in studies on glaciology and periglacial enviro...Despite being within the intertropical region of the planet,the Mexican territory still has glacier-covered mountains.In recent decades,important advances have been made in studies on glaciology and periglacial environment in Mexico both for current and past conditions.However,in spite of Cofre de Perote volcano(4200 m a.s.l.)being a strategically located mountain,it has not yet been studied in regards to the glacial and periglacial processes;in fact,those dynamics have modified the mountain massifs in the past.To complement the series of studies on glacial history in the high mountain environment of México,this study reconstructs the glacial cover and the periglacial environment of the volcano surface during the final stage of the Late Pleistocene based on climatic retrospective and through the identification of geomorphological features.The findings indicate the existence of a large glacier(ice cap)that covered the northern,western,and southern slopes of the mountain;while in the eastern sector there were two small glaciers,one being of cirque type,and the other of valley type.The current temperature conditions prevent the occurrence of permanent ice bodies;at the same time,it was found that the periglacial blockfields of the slopes is a legacy of the climatic conditions that prevailed at the end of Late Pleistocene.展开更多
紫泥湖地区座落在贺兰山西边45km处,海拔高度约1200m,区域地形呈现向北“V”字形开口的箕状洼地,其上生长旱生植被群落,沿自南而北流的沟谷阶地上发育了冻融褶皱、冰楔和砂楔等冰缘地貌类型和过程,研究结果表明区域年平均气温末次冰期早...紫泥湖地区座落在贺兰山西边45km处,海拔高度约1200m,区域地形呈现向北“V”字形开口的箕状洼地,其上生长旱生植被群落,沿自南而北流的沟谷阶地上发育了冻融褶皱、冰楔和砂楔等冰缘地貌类型和过程,研究结果表明区域年平均气温末次冰期早期(55—35ka B P)较今低10.5-12.5℃,末次冰期盛期(20—15ka B P)较今低12.5-13.7℃,早全新世(9.5—8.0kaB P)较今低9.5—10.5℃;降雨状况逐渐向更干燥变化。展开更多
Rockfalls are one of the most common instability processes in high mountains.They represent a relevant issue,both for the risks they represent for(infra)structures and frequentation,and for their potential role as ter...Rockfalls are one of the most common instability processes in high mountains.They represent a relevant issue,both for the risks they represent for(infra)structures and frequentation,and for their potential role as terrestrial indicators of climate change.This study aims to contribute to the growing topic of the relationship between climate change and slope instability at the basin scale.The selected study area is the Bessanese glacial basin(Western Italian Alps)which,since 2016,has been specifically equipped,monitored and investigated for this purpose.In order to provide a broader context for the interpretation of the recent rockfall events and associated climate conditions,a cross-temporal and integrated approach has been adopted.For this purpose,geomorphological investigations(last 100 years),local climate(last 30 years)and near-surface rock/air temperatures analyses,have been carried out.First research outcomes show that rockfalls occurred in two different geomorphological positions:on rock slopes in permafrost condition,facing from NW to NE and/or along the glacier margins,on rock slopes uncovered by the ice in the last decades.Seasonal thaw of the active layer and/or glacier debutressing can be deemed responsible for slope failure preparation.With regard to timing,almost all dated rock falls occurred in summer.For the July events,initiation may have been caused by a combination of rapid snow melt and enhanced seasonal thaw of the active layer due to anomalous high temperatures,and rainfall.August events are,instead,associated with a significant positive temperature anomaly on the quarterly scale,and they can be ascribed to the rapid and/or in depth thaw of the permafrost active layer.According to our findings,we can expect that in the Bessanese glacierized basin,as in similar high mountain areas,climate change will cause an increase of slope instability in the future.To fasten knowledge deepening,we highlight the need for a growth of a network of high elevation experimental sites at the basin scale,and the definition of shared methodological and measurement standards,that would allow a more rapid and effective comparison of data.展开更多
文摘Despite being within the intertropical region of the planet,the Mexican territory still has glacier-covered mountains.In recent decades,important advances have been made in studies on glaciology and periglacial environment in Mexico both for current and past conditions.However,in spite of Cofre de Perote volcano(4200 m a.s.l.)being a strategically located mountain,it has not yet been studied in regards to the glacial and periglacial processes;in fact,those dynamics have modified the mountain massifs in the past.To complement the series of studies on glacial history in the high mountain environment of México,this study reconstructs the glacial cover and the periglacial environment of the volcano surface during the final stage of the Late Pleistocene based on climatic retrospective and through the identification of geomorphological features.The findings indicate the existence of a large glacier(ice cap)that covered the northern,western,and southern slopes of the mountain;while in the eastern sector there were two small glaciers,one being of cirque type,and the other of valley type.The current temperature conditions prevent the occurrence of permanent ice bodies;at the same time,it was found that the periglacial blockfields of the slopes is a legacy of the climatic conditions that prevailed at the end of Late Pleistocene.
文摘紫泥湖地区座落在贺兰山西边45km处,海拔高度约1200m,区域地形呈现向北“V”字形开口的箕状洼地,其上生长旱生植被群落,沿自南而北流的沟谷阶地上发育了冻融褶皱、冰楔和砂楔等冰缘地貌类型和过程,研究结果表明区域年平均气温末次冰期早期(55—35ka B P)较今低10.5-12.5℃,末次冰期盛期(20—15ka B P)较今低12.5-13.7℃,早全新世(9.5—8.0kaB P)较今低9.5—10.5℃;降雨状况逐渐向更干燥变化。
基金the framework of the RiST Project,co-financed by“Fondazione Cassa di Risparmio di Torino”and by MeteoMet Project。
文摘Rockfalls are one of the most common instability processes in high mountains.They represent a relevant issue,both for the risks they represent for(infra)structures and frequentation,and for their potential role as terrestrial indicators of climate change.This study aims to contribute to the growing topic of the relationship between climate change and slope instability at the basin scale.The selected study area is the Bessanese glacial basin(Western Italian Alps)which,since 2016,has been specifically equipped,monitored and investigated for this purpose.In order to provide a broader context for the interpretation of the recent rockfall events and associated climate conditions,a cross-temporal and integrated approach has been adopted.For this purpose,geomorphological investigations(last 100 years),local climate(last 30 years)and near-surface rock/air temperatures analyses,have been carried out.First research outcomes show that rockfalls occurred in two different geomorphological positions:on rock slopes in permafrost condition,facing from NW to NE and/or along the glacier margins,on rock slopes uncovered by the ice in the last decades.Seasonal thaw of the active layer and/or glacier debutressing can be deemed responsible for slope failure preparation.With regard to timing,almost all dated rock falls occurred in summer.For the July events,initiation may have been caused by a combination of rapid snow melt and enhanced seasonal thaw of the active layer due to anomalous high temperatures,and rainfall.August events are,instead,associated with a significant positive temperature anomaly on the quarterly scale,and they can be ascribed to the rapid and/or in depth thaw of the permafrost active layer.According to our findings,we can expect that in the Bessanese glacierized basin,as in similar high mountain areas,climate change will cause an increase of slope instability in the future.To fasten knowledge deepening,we highlight the need for a growth of a network of high elevation experimental sites at the basin scale,and the definition of shared methodological and measurement standards,that would allow a more rapid and effective comparison of data.