Almost all work on model-based diagnosis (MBD) potentially presumes faults are per- sistent and does not take intermittent faults (IFs) into account. Therefore, it is common for diag- nosis systems to misjudge IFs...Almost all work on model-based diagnosis (MBD) potentially presumes faults are per- sistent and does not take intermittent faults (IFs) into account. Therefore, it is common for diag- nosis systems to misjudge IFs as permanent faults (PFs), which are the major cause of the problems of false alarms, cannot duplication and no fault found in aircraft avionics. To address this problem, a new fault model which includes PFs and IFs is presented based on discrete event systems (DESs). Thereafter, an approach is given to discriminate between PFs and IFs by diagnosing the current fault. In this paper, the regulations of (PFs and IFs) fault evolution through fault and reset events along the traces of system are studied, and then label propagation function is modified to account for PFs and the dynamic behavior of IFs and diagnosability of PFs and IFs are defined. Finally, illustrative examples are presented to demonstrate the proposed approach, and the analysis results show the fault types can be discriminated within bounded delay if the system is diagnosable.展开更多
As there are no specific guidelines on design of subsea pipelines crossing active seismic faults, methods for land buried pipelines have been applied to. Taking the large seismic fault movement into account, this pape...As there are no specific guidelines on design of subsea pipelines crossing active seismic faults, methods for land buried pipelines have been applied to. Taking the large seismic fault movement into account, this paper proposes improved methods for seismic designs of subsea pipelines by comprehensively investigating the real constraining of soil on the pipelines, the interaction processes of soil with the pipeline, the plastic slippage of the soil, and the elastic-plastic properties of the pipeline materials. New formulas are given to calculate the length of transition section and its total elongation. These formulas are more reasonable in mechanism, and more practical for seismic design of subsea pipelines crossing active faults.展开更多
Corrective control theory lays a novel foundation for the fault-tolerant control of asynchronous sequential machines. In this paper, we present a corrective control scheme for tolerating permanent state transition fau...Corrective control theory lays a novel foundation for the fault-tolerant control of asynchronous sequential machines. In this paper, we present a corrective control scheme for tolerating permanent state transition faults in the dynamics of asynchronous sequential machines. By a fault occurrence, the asynchronous machine may be stuck at a faulty state, not responding to the external input. We analyze the detectability of the considered faults and present the necessary and sufficient condition for the existence of a controller that overcomes any permanent transition faults. Fault tolerance is realized by using potential reachability and asynchronous mechanisms in the machine. A case study on an asynchronous counter is provided to illustrate the proposed fault detection and tolerance scheme.展开更多
With the development of more/all electrical aircraft technology, an electro-mechanical actuator(EMA) is more and more used in an aircraft actuation system. The motor system, as the crucial part of an EMA, usually ad...With the development of more/all electrical aircraft technology, an electro-mechanical actuator(EMA) is more and more used in an aircraft actuation system. The motor system, as the crucial part of an EMA, usually adopts the redundancy technology or fault tolerance technology to improve the reliability. To compare the performances of these two motor systems, a 10-pole/12-slot six-phase permanent magnet synchronous motor(PMSM) is designed with the concentrated single-layer winding, which is able to operate at dual-redundant and fault tolerant modes.Furthermore, the position servo performances of the six-phase PMSM at dual-redundant and fault tolerant modes are analyzed, including the normal and fault conditions. In addition, a variable structure proportional-integral-derivative(PID) control strategy is proposed to solve the performance degradation problem caused by phase current saturation. Simulation and experimental results show that the fault tolerant PMSM has a better position servo performance than the dual-redundant PMSM, and the variable structure PID control strategy is able to improve the performance due to phase current saturation.展开更多
Statistics shows that transients produced by lightning or momentary links with external objects, have produced more than 80% of faults in overhead lines. Reclosing of circuit breaker (CB) after a pre-defined dead time...Statistics shows that transients produced by lightning or momentary links with external objects, have produced more than 80% of faults in overhead lines. Reclosing of circuit breaker (CB) after a pre-defined dead time is very common however reclosing onto permanent faults may damage the power system stability and aggravate severe damage to the system. Thus, adaptive single-phase auto-reclosing (ASPAR) based on investigating existing electrical signals has fascinated engineers and researchers. An ASPAR blocks CB reclosing onto permanent faults and allows reclosing permission once secondary arc is quenched. To address the subject, there have been many ASPARs techniques proposed based on the features trapped in a faulty phase. This paper presents a critical survey of adaptive auto-reclosing schemes that have hitherto been applied to EHV transmission lines.展开更多
As technology scales down, the reliability issues are becoming more crucial, especially for networks-on-chip (NoCs) that provide the communication requirements of multi-processor systems-on-chip. Reliability evaluatio...As technology scales down, the reliability issues are becoming more crucial, especially for networks-on-chip (NoCs) that provide the communication requirements of multi-processor systems-on-chip. Reliability evaluation based on analytical models is a precise method for dependability analysis before and after designing the fault-tolerant systems. In this paper, we accurately formulate the inherent reliability and vulnerability of some popular NoC architectures against permanent faults, also depending on the employed routing algorithm and traffic model. Based on this analysis, effects of failures in the links, switches and network interfaces on the packet delivery of NoCs are determined. Besides, some extensions to evaluate a fault-tolerant method and some routing algorithms are described. The analyses are validated through appropriate simulations. The results thus obtained are exactly the same as or very close to the analytical ones.展开更多
We present a new algorithm for adaptive single-pole auto-reclosing of power transmission lines using wavelet packet transform. The db8 wavelet packet decomposes the faulted phase voltage waveform to obtain the coeffic...We present a new algorithm for adaptive single-pole auto-reclosing of power transmission lines using wavelet packet transform. The db8 wavelet packet decomposes the faulted phase voltage waveform to obtain the coefficients of the nodes 257, 259 to 262. An index is then defined from the sum of the energy coefficients of these nodes. By evaluating the index, transient and permanent faults, as well as the secondary arc extinction instant, can be identified. The significant advantage of the proposed algorithm is that it does not need a threshold level and therefore its performance is independent of fault location, line parameters, and operating conditions. Moreover, it can be used in transmission lines with reactor compensation. The proposed method has been successfully tested under a variety of fault conditions on a 400 kV overhead line of the Iranian National Grid using the Electro-Magnetic Transient Program (EMTP). The test results validated the algorithm’s ability in distinguishing between transient arcing and permanent faults and determining the instant of secondary arc extinction.展开更多
基金co-supported by National Natural Science Foundation of China (No. 51175502)National Defence Pre-research Foundation of China (No. 9140A17060411KG01)
文摘Almost all work on model-based diagnosis (MBD) potentially presumes faults are per- sistent and does not take intermittent faults (IFs) into account. Therefore, it is common for diag- nosis systems to misjudge IFs as permanent faults (PFs), which are the major cause of the problems of false alarms, cannot duplication and no fault found in aircraft avionics. To address this problem, a new fault model which includes PFs and IFs is presented based on discrete event systems (DESs). Thereafter, an approach is given to discriminate between PFs and IFs by diagnosing the current fault. In this paper, the regulations of (PFs and IFs) fault evolution through fault and reset events along the traces of system are studied, and then label propagation function is modified to account for PFs and the dynamic behavior of IFs and diagnosability of PFs and IFs are defined. Finally, illustrative examples are presented to demonstrate the proposed approach, and the analysis results show the fault types can be discriminated within bounded delay if the system is diagnosable.
基金supported by the National Natural Science Foundation of China (Grant No. 50979113)the National High Technology Research and Development Program of China (863 Program, Grant No. 2006AA09A105)the China National Offshore Oil Corporation
文摘As there are no specific guidelines on design of subsea pipelines crossing active seismic faults, methods for land buried pipelines have been applied to. Taking the large seismic fault movement into account, this paper proposes improved methods for seismic designs of subsea pipelines by comprehensively investigating the real constraining of soil on the pipelines, the interaction processes of soil with the pipeline, the plastic slippage of the soil, and the elastic-plastic properties of the pipeline materials. New formulas are given to calculate the length of transition section and its total elongation. These formulas are more reasonable in mechanism, and more practical for seismic design of subsea pipelines crossing active faults.
文摘Corrective control theory lays a novel foundation for the fault-tolerant control of asynchronous sequential machines. In this paper, we present a corrective control scheme for tolerating permanent state transition faults in the dynamics of asynchronous sequential machines. By a fault occurrence, the asynchronous machine may be stuck at a faulty state, not responding to the external input. We analyze the detectability of the considered faults and present the necessary and sufficient condition for the existence of a controller that overcomes any permanent transition faults. Fault tolerance is realized by using potential reachability and asynchronous mechanisms in the machine. A case study on an asynchronous counter is provided to illustrate the proposed fault detection and tolerance scheme.
基金supported by Aeronautical Science Foundation of China (No. 2016ZC51025)the Open Research Fund of Key Laboratory of Space Utilization, Chinese Academy of Science (No. 20161201)
文摘With the development of more/all electrical aircraft technology, an electro-mechanical actuator(EMA) is more and more used in an aircraft actuation system. The motor system, as the crucial part of an EMA, usually adopts the redundancy technology or fault tolerance technology to improve the reliability. To compare the performances of these two motor systems, a 10-pole/12-slot six-phase permanent magnet synchronous motor(PMSM) is designed with the concentrated single-layer winding, which is able to operate at dual-redundant and fault tolerant modes.Furthermore, the position servo performances of the six-phase PMSM at dual-redundant and fault tolerant modes are analyzed, including the normal and fault conditions. In addition, a variable structure proportional-integral-derivative(PID) control strategy is proposed to solve the performance degradation problem caused by phase current saturation. Simulation and experimental results show that the fault tolerant PMSM has a better position servo performance than the dual-redundant PMSM, and the variable structure PID control strategy is able to improve the performance due to phase current saturation.
文摘Statistics shows that transients produced by lightning or momentary links with external objects, have produced more than 80% of faults in overhead lines. Reclosing of circuit breaker (CB) after a pre-defined dead time is very common however reclosing onto permanent faults may damage the power system stability and aggravate severe damage to the system. Thus, adaptive single-phase auto-reclosing (ASPAR) based on investigating existing electrical signals has fascinated engineers and researchers. An ASPAR blocks CB reclosing onto permanent faults and allows reclosing permission once secondary arc is quenched. To address the subject, there have been many ASPARs techniques proposed based on the features trapped in a faulty phase. This paper presents a critical survey of adaptive auto-reclosing schemes that have hitherto been applied to EHV transmission lines.
文摘As technology scales down, the reliability issues are becoming more crucial, especially for networks-on-chip (NoCs) that provide the communication requirements of multi-processor systems-on-chip. Reliability evaluation based on analytical models is a precise method for dependability analysis before and after designing the fault-tolerant systems. In this paper, we accurately formulate the inherent reliability and vulnerability of some popular NoC architectures against permanent faults, also depending on the employed routing algorithm and traffic model. Based on this analysis, effects of failures in the links, switches and network interfaces on the packet delivery of NoCs are determined. Besides, some extensions to evaluate a fault-tolerant method and some routing algorithms are described. The analyses are validated through appropriate simulations. The results thus obtained are exactly the same as or very close to the analytical ones.
文摘We present a new algorithm for adaptive single-pole auto-reclosing of power transmission lines using wavelet packet transform. The db8 wavelet packet decomposes the faulted phase voltage waveform to obtain the coefficients of the nodes 257, 259 to 262. An index is then defined from the sum of the energy coefficients of these nodes. By evaluating the index, transient and permanent faults, as well as the secondary arc extinction instant, can be identified. The significant advantage of the proposed algorithm is that it does not need a threshold level and therefore its performance is independent of fault location, line parameters, and operating conditions. Moreover, it can be used in transmission lines with reactor compensation. The proposed method has been successfully tested under a variety of fault conditions on a 400 kV overhead line of the Iranian National Grid using the Electro-Magnetic Transient Program (EMTP). The test results validated the algorithm’s ability in distinguishing between transient arcing and permanent faults and determining the instant of secondary arc extinction.