A novel elevator door driven by tubular permanent magnet linear synchronous motor (TPMLSM) is presented. This TPMLSM applies axial magnet array topology of the secondary rod, air-cored armature windings and slotless s...A novel elevator door driven by tubular permanent magnet linear synchronous motor (TPMLSM) is presented. This TPMLSM applies axial magnet array topology of the secondary rod, air-cored armature windings and slotless structure of the forcer to improve the stability of the thrust. The influence of two major dimensions, the pitch and radius of the permanent magnet (PM), on magnetic field was studied and the best values were given by the finite element analysis (FEA). The magnetic field, back EMF and thrust of the motor were analyzed and the PM size was optimized to reduce the harmonic components of the magnetic field and improve the performance of the motor. Predicted results are validated by the experiment. It is shown that the performance of the motor and the novel elevator door system is satisfying.展开更多
In this paper, with the non-salient pole permanent magnet linear synchronous motor (PMLSM)being cited, by using Fourier transform method and "slot-by-slot", "pole -by-pole" current approach, a 3D e...In this paper, with the non-salient pole permanent magnet linear synchronous motor (PMLSM)being cited, by using Fourier transform method and "slot-by-slot", "pole -by-pole" current approach, a 3D electromagnetic field model of PMLSM is established. Special attention is paid to its structure and the influence of longitudinal and transverse end effect. The distribution of electromagnetic field of PMLSM can be obtained directly and promptly by using FFT algorithm. It can also be used for the analysis of other LSM.展开更多
A novel flux-switching permanent magnet linear motor(FSPMLM) is proposed for linear direct driving machine tools.First,the two-and three-dimensional topological configuration of the proposed motor is presented;the b...A novel flux-switching permanent magnet linear motor(FSPMLM) is proposed for linear direct driving machine tools.First,the two-and three-dimensional topological configuration of the proposed motor is presented;the basic operational principle of the FSPMLM is introduced;and the magnetic fields at the two typical conditions of no-load are analyzed.Secondly,the FSPMLM is analyzed by the two-dimensional finite element method(FEM) to investigate the static electromagnetic characteristics such as flux-linkage,back EMF(electromotive force) and inductance performances.The cogging forces of two kinds of FSPMLMs with different shaped cores are analyzed and compared,and the results show that the cogging force is significantly reduced by using the E-shaped cores.Additionally,based on the co-energy method,the thrust equation is derived and verified by the simulation results obtained by the FEM.Finally,an experimental prototype is used to test the characteristics under open circuit and load conditions.The simulation and experimental results indicate that the proposed motor has advantages of a sinusoidal back-EMF waveform,a small cogging effect and a high thrust density,and it is suitable for the application of linear direct driving machine tools.展开更多
Permanent magnet synchronous motor(PMSM)speed control systems with conventional linear active disturbance rejection control(CLADRC)strategy encounter issues regarding the coupling between dynamic response and disturba...Permanent magnet synchronous motor(PMSM)speed control systems with conventional linear active disturbance rejection control(CLADRC)strategy encounter issues regarding the coupling between dynamic response and disturbance suppression and have poor performance in suppressing complex nonlinear disturbances.In order to address these issues,this paper proposes an improved two-degree-of-freedom LADRC(TDOF-LADRC)strategy,which can enhance the disturbance rejection performance of the system while decoupling entirely the system's dynamic and anti-disturbance performance to boost the system robustness and simplify controller parameter tuning.PMSM models that consider total disturbances are developed to design the TDOF-LADRC speed controller accurately.Moreover,to evaluate the control performance of the TDOF-LADRC strategy,its stability is proven,and the influence of each controller parameter on the system control performance is analyzed.Based on it,a comparison is made between the disturbance observation ability and anti-disturbance performance of TDOF-LADRC and CLADRC to prove the superiority of TDOF-LADRC in rejecting disturbances.Finally,experiments are performed on a 750 W PMSM experimental platform,and the results demonstrate that the proposed TDOF-LADRC exhibits the properties of two degrees of freedom and improves the disturbance rejection performance of the PMSM system.展开更多
In the process of identifying parameters for a permanent magnet synchronous motor,the particle swarm optimization method is prone to being stuck in local optima in the later stages of iteration,resulting in low parame...In the process of identifying parameters for a permanent magnet synchronous motor,the particle swarm optimization method is prone to being stuck in local optima in the later stages of iteration,resulting in low parameter accuracy.This work proposes a fuzzy particle swarm optimization approach based on the transformation function and the filled function.This approach addresses the topic of particle swarmoptimization in parameter identification from two perspectives.Firstly,the algorithm uses a transformation function to change the form of the fitness function without changing the position of the extreme point of the fitness function,making the extreme point of the fitness function more prominent and improving the algorithm’s search ability while reducing the algorithm’s computational burden.Secondly,on the basis of themulti-loop fuzzy control systembased onmultiplemembership functions,it is merged with the filled function to improve the algorithm’s capacity to skip out of the local optimal solution.This approach can be used to identify the parameters of permanent magnet synchronous motors by sampling only the stator current,voltage,and speed data.The simulation results show that the method can effectively identify the electrical parameters of a permanent magnet synchronous motor,and it has superior global convergence performance and robustness.展开更多
Due to high power density,high efficiency,and accurate control performance,permanent magnet synchronous motors(PMSMs)have been widely adopted in equipment manufacturing and energy transformation fields.To expand the s...Due to high power density,high efficiency,and accurate control performance,permanent magnet synchronous motors(PMSMs)have been widely adopted in equipment manufacturing and energy transformation fields.To expand the speed range under finite DC-bus voltage,extensive research on field weakening(FW)control strategies has been conducted.This paper summarizes the major FW control strategies of PMSMs,which are categorized into calculation-based methods,voltage closed-loop control methods,and model predictive control related methods.The existing strategies are analyzed and compared according to performance,robustness,and execution difficulty,which can facilitate the implementation of FW control.展开更多
A novel topology of modular ferrite magnet fluxswitching linear motor(FMFSLM)use for track transport is presented in this paper,which enables more ferrite magnets to be inserted into the primary iron core.The motor ha...A novel topology of modular ferrite magnet fluxswitching linear motor(FMFSLM)use for track transport is presented in this paper,which enables more ferrite magnets to be inserted into the primary iron core.The motor has a significant low-cost advantage in long-distance linear drive.The proposed FMFSLM’s structure and working principle were introduced.Further,the thrust force expression of the motor was established.The thrust force components triggering thrust force ripple were investigated,and their expressions can be obtained according to the inductances’Fourier series expressions.Resultantly,the relationship between the harmonics of thrust force and that of self-and mutual inductances was revealed clearly.Based on the relationship,a skewed secondary should be practical to reduce the thrust force ripple.Thus,the effect of employing a skewed secondary to the proposed FMFSLM was investigated,and an optimized skewing span distance was determined.Finite element analysis(FEA)was conducted to validate the exactness of the theoretical analysis.The simulation results indicate that the strategy of suppressing thrust force ripple has a significant effect.Meanwhile,the motor maintains a good efficiency characteristic.The results of the prototype experiment are in good agreement with FEAs,which further verifies the proposed modular interior FMFSLM’s practicability.展开更多
Due to low damping ratio, fiat permanent magnet linear synchronous motor's vibration is difficult to be damped and the accuracy is limited. The vibration suppressing results are not good enough in the existing resear...Due to low damping ratio, fiat permanent magnet linear synchronous motor's vibration is difficult to be damped and the accuracy is limited. The vibration suppressing results are not good enough in the existing research because only the longitudinal direction vibration is considered while the normal direction vibration is neglected. The parameters of the direct-axis current controller are set to be the same as those of the quadrature-axis current controller commonly. This causes contradiction between signal noise and response. To suppress the vibration, the electromagnetic force model of the flat permanent magnet synchronous linear motor is formulated first. Through the analysis of the effect that direct-axis current noise and quadrature-axis current noise have on both direction vibration, it can be declared that the conclusion that longitudinal direction vibration is only related to the quadrature-axis current noise while the normal direction vibration is related to both the quadrature-axis current noise and direct-axis current noise. Then, the simulation test on current loop with a low-pass filter is conducted and the results show that the low-pass filter can not suppress the vibration but makes the vibration more severe. So a vibration suppressing strategy that the proportional gain of direct-axis current controller adapted according to quadrature-axis reference current is proposed. This control strategy can suppress motor vibration by suppressing direct-axis current noise. The experiments results about the effect of Kp and Ti on normal direction vibration, longitudinal vibration and the position step response show that this strategy suppresses vibration effectively while the motor's motion performance is not affected. The maximum reduction of vibration can be up to 40%. In addition, current test under rated load condition is also conducted and the results show that the control strategy can avoid the conflict between the direct-axis current and the quadrature-axis current under typical load. Adaptive PI control strategy can effectively suppress the flat permanent magnet linear synchronous motor's vibration without affecting the motor's performance.展开更多
With the air gap magnetic field distribution of surface mounted permanent magnet (PM) motors obtained using an analytical technique, the instantaneous electromagnetic torque and its corresponding components are inve...With the air gap magnetic field distribution of surface mounted permanent magnet (PM) motors obtained using an analytical technique, the instantaneous electromagnetic torque and its corresponding components are investigated with the Maxwell stress tensor method. Accurate results can easily be achieved using the proposed method without using the tedious finite element analysis (FEA). In this paper, the electromagnetic torque of a surface mounted PM motor with two phases energized is decomposed into four torque components. This technique is useful not only for the design and optimization of the permanent magnet motor, but also for the choice of control strategy.展开更多
Permanent magnet linear synchronous motor(PMLSM)has the advantages of high thrust density and good control accuracy,which can be applied in high-power and high-speed occasions.In this paper,the analytical models are e...Permanent magnet linear synchronous motor(PMLSM)has the advantages of high thrust density and good control accuracy,which can be applied in high-power and high-speed occasions.In this paper,the analytical models are established to obtain the electromagnetic performance for the PMLSMs with dual secondaries and dual primaries.The air-gap flux density and the electromagnetic thrust are also obtained by the finite element model to verify theoretical analysis.Besides,an improved structure is also put forward in order to suppress the thrust fluctuation of the PMLSM.Finally,the advantages and disadvantages of two PMLSMs topologies are listed.These analyses would provide a guide for the design of PMLSMs applied in high-power and high-speed occasions.展开更多
A discontinuity of magnetic circuits according to the end effect is generated in the permanent magnet linear synchronous motor (PMLSM). Due to the unbalanced back electro-motive force (EMF) and impedance produced,...A discontinuity of magnetic circuits according to the end effect is generated in the permanent magnet linear synchronous motor (PMLSM). Due to the unbalanced back electro-motive force (EMF) and impedance produced, unbalanced current is generated. The cireulatin8 current, which is caused by a decrease in the thrust, is generated by the unbalanced current. The optimal design of auxiliary-teeth at the end of the mover was carried out to solve the unbalance of phase by using design of experiment (DOE), and compared with the basic model through finite element analysis (FEA). As a result, the auxiliary-teeth model compensates for the decrease of thrust caused by the unbalanced phase. Also, this model is proven to reduce the detent force by the vibration and noise of the PMLSM and copper loss caused by the circulating current.展开更多
A novel high power-density PMSM (permanent magnetic synchronous motor) with independent magnetic flux path for each phase is proposed in the paper. The complex ma thematic model of PMSM is simplified by decoupling of ...A novel high power-density PMSM (permanent magnetic synchronous motor) with independent magnetic flux path for each phase is proposed in the paper. The complex ma thematic model of PMSM is simplified by decoupling of magnetic flux paths between motor phases. In addition, harmonic components are lowered through optimum design of EMF (electric motive force) wave. Thus the ripple torque caused by EMF wave distortion is suppressed. Key words PMSM (permanent magnetic synchronous motor) - phase decoupling - optimum design of back EMF(electric motive force)展开更多
In this article, the 2D transient FEM has been used to analyze the dynamic process of the three phase LS-PMSM running characteristic. By verifying it through the experiment, we obtain the conclusion that the simulatio...In this article, the 2D transient FEM has been used to analyze the dynamic process of the three phase LS-PMSM running characteristic. By verifying it through the experiment, we obtain the conclusion that the simulation result is consistent with the experiment result. At the same time, by analyzing the situation of the magnetic bridge, we also obtain the result that the EMF waves are changing with the situation of the magnetic poles on and we can optimize the motor’s structure at the same time.展开更多
Presented field-circuit coupled adaptive time-stepping finite element method to study on permanent magnet linear synchronous motor (PMLSM) characteristics fed by SPWM voltage source inverter.In air-gap field where the...Presented field-circuit coupled adaptive time-stepping finite element method to study on permanent magnet linear synchronous motor (PMLSM) characteristics fed by SPWM voltage source inverter.In air-gap field where the direction or magnitude of the field is changing rapidly,the smallest elements are demanded due to high accuracy to use adaptive meshing technique.The co-simulation was used with the status space functions and time-step finite element functions,in which time-step of the status space functions was the smallest than finite element functions'.The magnitude relation of the normal elec- tromagnetic force and tangential electromagnetic force and the period were attained,and current curve was very abrupt at current zero area due to the bigger resistance and leak- age reactance,including main characteristics of motor voltage and velocity.The simulation results compare triumphantly with the experiments results.展开更多
In this paper, an adaptive gain tuning rule is designed for the nonlinear sliding mode speed control(NSMSC) in order to enhance the dynamic performance and the robustness of the permanent magnet assisted synchronous r...In this paper, an adaptive gain tuning rule is designed for the nonlinear sliding mode speed control(NSMSC) in order to enhance the dynamic performance and the robustness of the permanent magnet assisted synchronous reluctance motor(PMa-Syn RM) with considering the parameter uncertainties. A nonlinear sliding surface whose parameters are altering with time is designed at first. The proposed NSMSC can minimize the settling time without any overshoot via utilizing a low damping ratio at starting along with a high damping ratio as the output approaches the target set-point. In addition, it eliminates the problem of the singularity with the upper bound of an uncertain term that is hard to be measured practically as well as ensures a rapid convergence in finite time, through employing a simple adaptation law. Moreover, for enhancing the system efficiency throughout the constant torque region, the control system utilizes the maximum torque per ampere technique. The nonlinear sliding surface stability is assured via employing Lyapunov stability theory. Furthermore, a simple sliding mode estimator is employed for estimating the system uncertainties. The stability analysis and the experimental results indicate the effectiveness along with feasibility of the proposed speed estimation and the NSMSC approach for a 1.1-k W PMa-Syn RM under different speed references, electrical and mechanical parameters disparities, and load disturbance conditions.展开更多
In order to accurately analyze the magnetic field of conical-rotor permanent magnet synchronous motor(CR-PMSM),the effectiveness of two methods was studied on handling of problems concerned with non-uniform distributi...In order to accurately analyze the magnetic field of conical-rotor permanent magnet synchronous motor(CR-PMSM),the effectiveness of two methods was studied on handling of problems concerned with non-uniform distribution of magnetic field along axial direction in CR-PMSM,which were sectional calculation(SC)method and three-dimensional finite element(3-D FE)method.On this basis,the influence of the axial displacement and dq-axis currents on the operating characteristics of axial magnetic force and torque is analyzed by using the 3-D FE model.Analysis results show that the axial magnetic force and torque decrease with the increase of axial displacement of the rotor,and the amplitude regularity of the axial magnetic force is affected by the d-axis current.A prototype machine is fabricated and tested,in order to validate the design theory.展开更多
Aiming at obtaining high power density of surface-mounted and interior permanent magnet synchronous motor(SIPMSM),it is important to accurately calculate the temperature field distribution of SIPMSM,and a magnetic-the...Aiming at obtaining high power density of surface-mounted and interior permanent magnet synchronous motor(SIPMSM),it is important to accurately calculate the temperature field distribution of SIPMSM,and a magnetic-thermal coupling method is proposed.The magnetic-thermal coupling mechanism is analyzed.The thermal network model and finite element model are built by this method,respectively.The effects of power frequency on iron losses and temperature fields are analyzed by the magnetic-thermal coupling finite element model under the condition of rated load,and the relationship between the load and temperature field is researched under the condition of the synchronous speed.In addition,the equivalent thermal network model is used to verify the magnetic-thermal coupling method.Then the temperatures of various nodes are obtained.The results show that there are advantages in both computational efficiency and accuracy for the proposed coupling method,which can be applied to other permanent magnet motors with complex structures.展开更多
In order to improve the characteristics of a conventional moving coil permanent magnet linear motor (MCPMLM), such as weak points on export force, response time, response speed, we studied a permanent magnet (PM) ...In order to improve the characteristics of a conventional moving coil permanent magnet linear motor (MCPMLM), such as weak points on export force, response time, response speed, we studied a permanent magnet (PM) structure that is a key component of MCPMLM. Different magnetization techniques of single PM and differ- ent array structures of multiple PMs are compared, and a new MCPMLM magnetized along the external field force lines wing eight pieces of a tegular Halbach magnet array with air gaps is proposed as well. The analysis on magnetic field and experimental results of MCPMLM demonstrates that the force between the coil and the PM increases by more than 40%. The simulation frequeney is close to 350 Hz at -3 dB , and the response time is O. 005 s. In addition, the experiment frequency reaches 300 Hz at -3 dB and the response time is 0. 004 s, which agrees well with the simulation results. It means that the developed MCPMLM enjoys advantages in high frequency and rapid response, and can satisfy the requirements of a high speed electro-hydraulic proportional valve.展开更多
A permanent magnet linear synchronous motor (PMLSM) for a high temperature superconducting (HTS) maglev system has been studied, including the motor structure, control strategy, and analysis techniques. Finite ele...A permanent magnet linear synchronous motor (PMLSM) for a high temperature superconducting (HTS) maglev system has been studied, including the motor structure, control strategy, and analysis techniques. Finite element analysis (FEA) of magnetic field is conducted to accurately calculate major motor parameters. Equivalent electrical circuit is used to predict the drive's steady-state characteristics, and a phase variable model is applied to predict the dynamic performance. Preliminary experiment with a prototype has been made to verify the theoretical analysis and the HTS-PM synchronous driving technology.展开更多
The 2D transient FEM was used to analyze the starting process of the three phase rare-earth LS-PMSM.By verifying the simulation result with the experiment one, we get the conclusion that it is consistent with the expe...The 2D transient FEM was used to analyze the starting process of the three phase rare-earth LS-PMSM.By verifying the simulation result with the experiment one, we get the conclusion that it is consistent with the experiment result very well.At the same time, by analyzing the situation of the magnetic bridge, we also get the result that the amplitude of EMF waves are changing with the situation of the magnetic poles and we can optimize the motor's structure at the same time.展开更多
基金Project (No. 50607016) supported by the National Natural ScienceFoundation of China
文摘A novel elevator door driven by tubular permanent magnet linear synchronous motor (TPMLSM) is presented. This TPMLSM applies axial magnet array topology of the secondary rod, air-cored armature windings and slotless structure of the forcer to improve the stability of the thrust. The influence of two major dimensions, the pitch and radius of the permanent magnet (PM), on magnetic field was studied and the best values were given by the finite element analysis (FEA). The magnetic field, back EMF and thrust of the motor were analyzed and the PM size was optimized to reduce the harmonic components of the magnetic field and improve the performance of the motor. Predicted results are validated by the experiment. It is shown that the performance of the motor and the novel elevator door system is satisfying.
文摘In this paper, with the non-salient pole permanent magnet linear synchronous motor (PMLSM)being cited, by using Fourier transform method and "slot-by-slot", "pole -by-pole" current approach, a 3D electromagnetic field model of PMLSM is established. Special attention is paid to its structure and the influence of longitudinal and transverse end effect. The distribution of electromagnetic field of PMLSM can be obtained directly and promptly by using FFT algorithm. It can also be used for the analysis of other LSM.
文摘A novel flux-switching permanent magnet linear motor(FSPMLM) is proposed for linear direct driving machine tools.First,the two-and three-dimensional topological configuration of the proposed motor is presented;the basic operational principle of the FSPMLM is introduced;and the magnetic fields at the two typical conditions of no-load are analyzed.Secondly,the FSPMLM is analyzed by the two-dimensional finite element method(FEM) to investigate the static electromagnetic characteristics such as flux-linkage,back EMF(electromotive force) and inductance performances.The cogging forces of two kinds of FSPMLMs with different shaped cores are analyzed and compared,and the results show that the cogging force is significantly reduced by using the E-shaped cores.Additionally,based on the co-energy method,the thrust equation is derived and verified by the simulation results obtained by the FEM.Finally,an experimental prototype is used to test the characteristics under open circuit and load conditions.The simulation and experimental results indicate that the proposed motor has advantages of a sinusoidal back-EMF waveform,a small cogging effect and a high thrust density,and it is suitable for the application of linear direct driving machine tools.
文摘Permanent magnet synchronous motor(PMSM)speed control systems with conventional linear active disturbance rejection control(CLADRC)strategy encounter issues regarding the coupling between dynamic response and disturbance suppression and have poor performance in suppressing complex nonlinear disturbances.In order to address these issues,this paper proposes an improved two-degree-of-freedom LADRC(TDOF-LADRC)strategy,which can enhance the disturbance rejection performance of the system while decoupling entirely the system's dynamic and anti-disturbance performance to boost the system robustness and simplify controller parameter tuning.PMSM models that consider total disturbances are developed to design the TDOF-LADRC speed controller accurately.Moreover,to evaluate the control performance of the TDOF-LADRC strategy,its stability is proven,and the influence of each controller parameter on the system control performance is analyzed.Based on it,a comparison is made between the disturbance observation ability and anti-disturbance performance of TDOF-LADRC and CLADRC to prove the superiority of TDOF-LADRC in rejecting disturbances.Finally,experiments are performed on a 750 W PMSM experimental platform,and the results demonstrate that the proposed TDOF-LADRC exhibits the properties of two degrees of freedom and improves the disturbance rejection performance of the PMSM system.
基金the Natural Science Foundation of China under Grant 52077027in part by the Liaoning Province Science and Technology Major Project No.2020JH1/10100020.
文摘In the process of identifying parameters for a permanent magnet synchronous motor,the particle swarm optimization method is prone to being stuck in local optima in the later stages of iteration,resulting in low parameter accuracy.This work proposes a fuzzy particle swarm optimization approach based on the transformation function and the filled function.This approach addresses the topic of particle swarmoptimization in parameter identification from two perspectives.Firstly,the algorithm uses a transformation function to change the form of the fitness function without changing the position of the extreme point of the fitness function,making the extreme point of the fitness function more prominent and improving the algorithm’s search ability while reducing the algorithm’s computational burden.Secondly,on the basis of themulti-loop fuzzy control systembased onmultiplemembership functions,it is merged with the filled function to improve the algorithm’s capacity to skip out of the local optimal solution.This approach can be used to identify the parameters of permanent magnet synchronous motors by sampling only the stator current,voltage,and speed data.The simulation results show that the method can effectively identify the electrical parameters of a permanent magnet synchronous motor,and it has superior global convergence performance and robustness.
基金supported by the Research Fund for the National Natural Science Foundation of China(52125701).
文摘Due to high power density,high efficiency,and accurate control performance,permanent magnet synchronous motors(PMSMs)have been widely adopted in equipment manufacturing and energy transformation fields.To expand the speed range under finite DC-bus voltage,extensive research on field weakening(FW)control strategies has been conducted.This paper summarizes the major FW control strategies of PMSMs,which are categorized into calculation-based methods,voltage closed-loop control methods,and model predictive control related methods.The existing strategies are analyzed and compared according to performance,robustness,and execution difficulty,which can facilitate the implementation of FW control.
基金supported by Shandong Provincial Natural Science Foundation under Grant ZR2020ME205.
文摘A novel topology of modular ferrite magnet fluxswitching linear motor(FMFSLM)use for track transport is presented in this paper,which enables more ferrite magnets to be inserted into the primary iron core.The motor has a significant low-cost advantage in long-distance linear drive.The proposed FMFSLM’s structure and working principle were introduced.Further,the thrust force expression of the motor was established.The thrust force components triggering thrust force ripple were investigated,and their expressions can be obtained according to the inductances’Fourier series expressions.Resultantly,the relationship between the harmonics of thrust force and that of self-and mutual inductances was revealed clearly.Based on the relationship,a skewed secondary should be practical to reduce the thrust force ripple.Thus,the effect of employing a skewed secondary to the proposed FMFSLM was investigated,and an optimized skewing span distance was determined.Finite element analysis(FEA)was conducted to validate the exactness of the theoretical analysis.The simulation results indicate that the strategy of suppressing thrust force ripple has a significant effect.Meanwhile,the motor maintains a good efficiency characteristic.The results of the prototype experiment are in good agreement with FEAs,which further verifies the proposed modular interior FMFSLM’s practicability.
基金supported by National Science and Technology Major Projects of China (Grant Nos. 2011ZX04016-011,2009ZX04010-022)
文摘Due to low damping ratio, fiat permanent magnet linear synchronous motor's vibration is difficult to be damped and the accuracy is limited. The vibration suppressing results are not good enough in the existing research because only the longitudinal direction vibration is considered while the normal direction vibration is neglected. The parameters of the direct-axis current controller are set to be the same as those of the quadrature-axis current controller commonly. This causes contradiction between signal noise and response. To suppress the vibration, the electromagnetic force model of the flat permanent magnet synchronous linear motor is formulated first. Through the analysis of the effect that direct-axis current noise and quadrature-axis current noise have on both direction vibration, it can be declared that the conclusion that longitudinal direction vibration is only related to the quadrature-axis current noise while the normal direction vibration is related to both the quadrature-axis current noise and direct-axis current noise. Then, the simulation test on current loop with a low-pass filter is conducted and the results show that the low-pass filter can not suppress the vibration but makes the vibration more severe. So a vibration suppressing strategy that the proportional gain of direct-axis current controller adapted according to quadrature-axis reference current is proposed. This control strategy can suppress motor vibration by suppressing direct-axis current noise. The experiments results about the effect of Kp and Ti on normal direction vibration, longitudinal vibration and the position step response show that this strategy suppresses vibration effectively while the motor's motion performance is not affected. The maximum reduction of vibration can be up to 40%. In addition, current test under rated load condition is also conducted and the results show that the control strategy can avoid the conflict between the direct-axis current and the quadrature-axis current under typical load. Adaptive PI control strategy can effectively suppress the flat permanent magnet linear synchronous motor's vibration without affecting the motor's performance.
基金Project supported by the Science Foundation of Shanghai Municipal Commission of Education (Grant No.04AB30)
文摘With the air gap magnetic field distribution of surface mounted permanent magnet (PM) motors obtained using an analytical technique, the instantaneous electromagnetic torque and its corresponding components are investigated with the Maxwell stress tensor method. Accurate results can easily be achieved using the proposed method without using the tedious finite element analysis (FEA). In this paper, the electromagnetic torque of a surface mounted PM motor with two phases energized is decomposed into four torque components. This technique is useful not only for the design and optimization of the permanent magnet motor, but also for the choice of control strategy.
基金This work has been partly supported in part by National Natural Science Foundation of China under Grants 51877093 and 51707079in part by the National Key Research and Development Program of China under Grant YS2018YFGH000200,in part by the Key Technical Innovation Program of Hubei Province under Grant 2019AAA026.
文摘Permanent magnet linear synchronous motor(PMLSM)has the advantages of high thrust density and good control accuracy,which can be applied in high-power and high-speed occasions.In this paper,the analytical models are established to obtain the electromagnetic performance for the PMLSMs with dual secondaries and dual primaries.The air-gap flux density and the electromagnetic thrust are also obtained by the finite element model to verify theoretical analysis.Besides,an improved structure is also put forward in order to suppress the thrust fluctuation of the PMLSM.Finally,the advantages and disadvantages of two PMLSMs topologies are listed.These analyses would provide a guide for the design of PMLSMs applied in high-power and high-speed occasions.
基金supported by the Second Stage of Brain Korea 21 Projects and Changwon National University in 2009-2010
文摘A discontinuity of magnetic circuits according to the end effect is generated in the permanent magnet linear synchronous motor (PMLSM). Due to the unbalanced back electro-motive force (EMF) and impedance produced, unbalanced current is generated. The cireulatin8 current, which is caused by a decrease in the thrust, is generated by the unbalanced current. The optimal design of auxiliary-teeth at the end of the mover was carried out to solve the unbalance of phase by using design of experiment (DOE), and compared with the basic model through finite element analysis (FEA). As a result, the auxiliary-teeth model compensates for the decrease of thrust caused by the unbalanced phase. Also, this model is proven to reduce the detent force by the vibration and noise of the PMLSM and copper loss caused by the circulating current.
文摘A novel high power-density PMSM (permanent magnetic synchronous motor) with independent magnetic flux path for each phase is proposed in the paper. The complex ma thematic model of PMSM is simplified by decoupling of magnetic flux paths between motor phases. In addition, harmonic components are lowered through optimum design of EMF (electric motive force) wave. Thus the ripple torque caused by EMF wave distortion is suppressed. Key words PMSM (permanent magnetic synchronous motor) - phase decoupling - optimum design of back EMF(electric motive force)
文摘In this article, the 2D transient FEM has been used to analyze the dynamic process of the three phase LS-PMSM running characteristic. By verifying it through the experiment, we obtain the conclusion that the simulation result is consistent with the experiment result. At the same time, by analyzing the situation of the magnetic bridge, we also obtain the result that the EMF waves are changing with the situation of the magnetic poles on and we can optimize the motor’s structure at the same time.
基金National Natural Sciences Foundation(60474043)Henan Province Science Fund for Distinguished Young Scholars(0412002200)Henan Province Major Projects(0223025300)
文摘Presented field-circuit coupled adaptive time-stepping finite element method to study on permanent magnet linear synchronous motor (PMLSM) characteristics fed by SPWM voltage source inverter.In air-gap field where the direction or magnitude of the field is changing rapidly,the smallest elements are demanded due to high accuracy to use adaptive meshing technique.The co-simulation was used with the status space functions and time-step finite element functions,in which time-step of the status space functions was the smallest than finite element functions'.The magnitude relation of the normal elec- tromagnetic force and tangential electromagnetic force and the period were attained,and current curve was very abrupt at current zero area due to the bigger resistance and leak- age reactance,including main characteristics of motor voltage and velocity.The simulation results compare triumphantly with the experiments results.
文摘In this paper, an adaptive gain tuning rule is designed for the nonlinear sliding mode speed control(NSMSC) in order to enhance the dynamic performance and the robustness of the permanent magnet assisted synchronous reluctance motor(PMa-Syn RM) with considering the parameter uncertainties. A nonlinear sliding surface whose parameters are altering with time is designed at first. The proposed NSMSC can minimize the settling time without any overshoot via utilizing a low damping ratio at starting along with a high damping ratio as the output approaches the target set-point. In addition, it eliminates the problem of the singularity with the upper bound of an uncertain term that is hard to be measured practically as well as ensures a rapid convergence in finite time, through employing a simple adaptation law. Moreover, for enhancing the system efficiency throughout the constant torque region, the control system utilizes the maximum torque per ampere technique. The nonlinear sliding surface stability is assured via employing Lyapunov stability theory. Furthermore, a simple sliding mode estimator is employed for estimating the system uncertainties. The stability analysis and the experimental results indicate the effectiveness along with feasibility of the proposed speed estimation and the NSMSC approach for a 1.1-k W PMa-Syn RM under different speed references, electrical and mechanical parameters disparities, and load disturbance conditions.
基金This work was supported by the National Natural Science Foundation,China under Grant 5173000400.
文摘In order to accurately analyze the magnetic field of conical-rotor permanent magnet synchronous motor(CR-PMSM),the effectiveness of two methods was studied on handling of problems concerned with non-uniform distribution of magnetic field along axial direction in CR-PMSM,which were sectional calculation(SC)method and three-dimensional finite element(3-D FE)method.On this basis,the influence of the axial displacement and dq-axis currents on the operating characteristics of axial magnetic force and torque is analyzed by using the 3-D FE model.Analysis results show that the axial magnetic force and torque decrease with the increase of axial displacement of the rotor,and the amplitude regularity of the axial magnetic force is affected by the d-axis current.A prototype machine is fabricated and tested,in order to validate the design theory.
基金This work was supported by Natural Science Foundation of China(Item number:51777060,U1361109)Natural Science Foundation of Henan province(Item number:162300410117)the he innovative research team plan of Henan Polytechnic University(Item number:T2015-2).
文摘Aiming at obtaining high power density of surface-mounted and interior permanent magnet synchronous motor(SIPMSM),it is important to accurately calculate the temperature field distribution of SIPMSM,and a magnetic-thermal coupling method is proposed.The magnetic-thermal coupling mechanism is analyzed.The thermal network model and finite element model are built by this method,respectively.The effects of power frequency on iron losses and temperature fields are analyzed by the magnetic-thermal coupling finite element model under the condition of rated load,and the relationship between the load and temperature field is researched under the condition of the synchronous speed.In addition,the equivalent thermal network model is used to verify the magnetic-thermal coupling method.Then the temperatures of various nodes are obtained.The results show that there are advantages in both computational efficiency and accuracy for the proposed coupling method,which can be applied to other permanent magnet motors with complex structures.
基金supported by The National High Technology Research and Development of China (863 Programme) under Grant No. 2006AA09Z226
文摘In order to improve the characteristics of a conventional moving coil permanent magnet linear motor (MCPMLM), such as weak points on export force, response time, response speed, we studied a permanent magnet (PM) structure that is a key component of MCPMLM. Different magnetization techniques of single PM and differ- ent array structures of multiple PMs are compared, and a new MCPMLM magnetized along the external field force lines wing eight pieces of a tegular Halbach magnet array with air gaps is proposed as well. The analysis on magnetic field and experimental results of MCPMLM demonstrates that the force between the coil and the PM increases by more than 40%. The simulation frequeney is close to 350 Hz at -3 dB , and the response time is O. 005 s. In addition, the experiment frequency reaches 300 Hz at -3 dB and the response time is 0. 004 s, which agrees well with the simulation results. It means that the developed MCPMLM enjoys advantages in high frequency and rapid response, and can satisfy the requirements of a high speed electro-hydraulic proportional valve.
文摘A permanent magnet linear synchronous motor (PMLSM) for a high temperature superconducting (HTS) maglev system has been studied, including the motor structure, control strategy, and analysis techniques. Finite element analysis (FEA) of magnetic field is conducted to accurately calculate major motor parameters. Equivalent electrical circuit is used to predict the drive's steady-state characteristics, and a phase variable model is applied to predict the dynamic performance. Preliminary experiment with a prototype has been made to verify the theoretical analysis and the HTS-PM synchronous driving technology.
文摘The 2D transient FEM was used to analyze the starting process of the three phase rare-earth LS-PMSM.By verifying the simulation result with the experiment one, we get the conclusion that it is consistent with the experiment result very well.At the same time, by analyzing the situation of the magnetic bridge, we also get the result that the amplitude of EMF waves are changing with the situation of the magnetic poles and we can optimize the motor's structure at the same time.