In this paper, the design, construction and ocean testing of a wave energy conversion system are studied. Based on the motion characteristics of double buoys in ocean waves, a wave energy conversion system with perman...In this paper, the design, construction and ocean testing of a wave energy conversion system are studied. Based on the motion characteristics of double buoys in ocean waves, a wave energy conversion system with permanent magnet tubular linear generator (PMTLG) is proposed to convert ocean wave energy into electricity. The wave energy conversion system was installed in the Yellow Sea near Lianyungang, China. The ocean test re- suits indicate that it had dynamic and static performance, and obtained an expected amount of electricity. The calcu- lation result indicates the average output power was about 1 000 W, and the conversion efficiency from wave en- ergy into electricity was 1.4%. In addition, the wireless data communication, mechanics and oceanography were also discussed.展开更多
This paper presents calculations of the varying inductances profile for a synchronous linear surface mounted permanent magnet generator in an ABC reference system. Calculations are performed by utilizing the reluctanc...This paper presents calculations of the varying inductances profile for a synchronous linear surface mounted permanent magnet generator in an ABC reference system. Calculations are performed by utilizing the reluctance term, known from analytic calculations and finite element method simulations. With the inductance term identified, the voltage difference between the generator’s no load and load voltage can be calculated and an external circuit can be designed for optimal use of the generator. Two different operation intervals of the linear generator are considered and the results are discussed. The result indicates that time costly finite element simulations can be replaced with simple analytical calculations for a surface mounted permanent magnet linear generator.展开更多
A modified four-dimensional linear active disturbance rejection control(LADRC)strategy is proposed for a dual three-phase permanent magnet synchronous generator(DTP-PMSG)system to reduce cross-coupling between the d a...A modified four-dimensional linear active disturbance rejection control(LADRC)strategy is proposed for a dual three-phase permanent magnet synchronous generator(DTP-PMSG)system to reduce cross-coupling between the d and q axis currents in the d-q subspace and harmonic currents in the x-y subspace.In the d-q subspace,the proposed strategy uses a model-based LADRC to enhance the decoupling effect between the d and q axes and the disturbance rejection ability against parameter variation.In the x-y subspace,the 5th and 7th harmonic current suppression abilities are improved by using quasi-resonant units parallel to the extended state observer of the traditional LADRC.The proposed modified LADRC strategy improved both the steady-state performance and dynamic response of the DTP-PMSG system.The experimental results demonstrate that the proposed strategy is both feasible and effective.展开更多
In recent years, with the growth of wind energy resources,the capability of wind farms to damp low-frequency oscillations(LFOs) has provided a notable advantage for the stabilityenhancement of the modern power grid. M...In recent years, with the growth of wind energy resources,the capability of wind farms to damp low-frequency oscillations(LFOs) has provided a notable advantage for the stabilityenhancement of the modern power grid. Meanwhile, owingto variations in the power system operating point (OP), thedamping characteristics of LFOs may be affected adversely. Inthis respect, this paper presents a coordinated robust proportional-integral-derivative (PID) based damping control approachfor permanent magnet synchronous generators (PMSGs)to effectively stabilize LFOs, while considering power system operationaluncertainties in the form of a polytopic model constructedby linearizing the power system under a given set ofOPs. The proposed approach works by modulating the DC-linkvoltage control loop of the grid-side converter (GSC) via a supplementaryPID controller, which is synthesized by transformingthe design problem into H-infinity static output feedback(SOF) control methodology. The solution of H-infinity SOF controlproblem involves satisfying linear matrix inequality (LMI)constraints based on the parameter-dependent Lyapunov functionto ensure asymptotic stability such that the minimal H-infinityperformance objective is simultaneously accomplished forthe entire polytope. The coordinated damping controllers forthe multiple wind farms are then designed sequentially by usingthe proposed approach. Eigenvalue analysis confirms the improveddamping characteristics of the closed-loop system forseveral representative OPs. Afterward, the simulation results, includingthe performance comparison with existing approaches,validate the higher robustness of the proposed approach for awide range of operating scenarios.展开更多
Aiming at the problem of poor system dynamic performance caused by low parameter matching in the coordinated control of Stirling engine and linear generator in the starting stage control of free piston Stirling linear...Aiming at the problem of poor system dynamic performance caused by low parameter matching in the coordinated control of Stirling engine and linear generator in the starting stage control of free piston Stirling linear generator system,a joint control method of free piston Stirling permanent magnet synchronous linear generator system based on field orientation control is proposed,based on the theoretical derivation of the mathematical model of the system and the principle of controller parameters setting,the simulation experiments of the system starting stage under several Stirling engine working conditions are carried out under simulation.The experimental results show that the stability and rapidity of the system are improved,and the dynamic response speed of generator parameters under different working conditions is accelerated,what fully verifies the correctness and effectiveness of the method.It provides an effective way to improve the control performance of the system and stabilize the power generation operation.展开更多
In this paper,the method for the nonlinear control design of a permanent magnet synchronous generator based-wind energy conversion system(WECS)is proposed in order to obtain robustness against disturbances and harvest...In this paper,the method for the nonlinear control design of a permanent magnet synchronous generator based-wind energy conversion system(WECS)is proposed in order to obtain robustness against disturbances and harvest a maximum power from a typical stochastic wind environment.The technique overcomes both the problem of nonlinearity and the uncertainty of the parameter compared to such classical control designs based on traditional control techniques.The method is based on the differential geometric feedback linearization technique(DGT)and the Lyapunov theory.The results obtained show the effectiveness and performance of the proposed approach.展开更多
摩擦力是影响直线伺服系统低速运行与点对点定位精度的主要非线性扰动。广义麦克斯韦(generalized Maxwellslip,GMS)摩擦模型虽然可以准确描述摩擦特性用于前馈补偿,但其存在切换点过渡时振荡的问题,同时易受测量噪声和摩擦参数变化等...摩擦力是影响直线伺服系统低速运行与点对点定位精度的主要非线性扰动。广义麦克斯韦(generalized Maxwellslip,GMS)摩擦模型虽然可以准确描述摩擦特性用于前馈补偿,但其存在切换点过渡时振荡的问题,同时易受测量噪声和摩擦参数变化等影响。为此,该文提出基于平滑GMS模型和改进扩张状态观测器(extended state observer,ESO)的复合摩擦补偿策略。首先,引入过渡用双曲正切函数以解决GMS模型中在切换点的反复穿越问题,并给出该模型的离线辨识方法。其次,设计基于模型信息的四阶ESO补偿剩余摩擦力与未知扰动,并引入切比雪夫滤波器整定观测器增益,以降低扰动观测与噪声敏感之间的冲突。为验证所提摩擦补偿策略的有效性,在小型高精度永磁同步直线电机定位平台上进行定位实验。实验结果验证了所提摩擦补偿策略的可行性和有效性。展开更多
Free-piston engine generators (FPEGs) can be applied as decarbonized range extenders for electric vehicles because of their high thermal efficiency, low friction loss, and ultimate fuel flexibility. In this paper, a p...Free-piston engine generators (FPEGs) can be applied as decarbonized range extenders for electric vehicles because of their high thermal efficiency, low friction loss, and ultimate fuel flexibility. In this paper, a parameter-decoupling approach is proposed to model the design of an FPEG. The parameter-decoupling approach first divides the FPEG into three parts: a two-stroke engine, an integrated scavenging pump, and a linear permanent magnet synchronous machine (LPMSM). Then, each of these is designed according to predefined specifications and performance targets. Using this decoupling approach, a numerical model of the FPEG, including the three aforementioned parts, was developed. Empirical equations were adopted to design the engine and scavenging pump, while special considerations were applied for the LPMSM. A finite element model with a multi-objective genetic algorithm was adopted for its design. The finite element model results were fed back to the numerical model to update the LPMSM with increased fidelity. The designed FPEG produced 10.2 kW of electric power with an overall system efficiency of 38.5% in a stable manner. The model provides a solid foundation for the manufacturing of related FPEG prototypes.展开更多
基金Supported by the National Natural Science Foundation of China(No.41076054)Special Foundation for State Oceanic Administration of China(No.GHME2011GD02)Scientific Research Foundation of Graduate School of Southeast University(No.YBJJ1416)
文摘In this paper, the design, construction and ocean testing of a wave energy conversion system are studied. Based on the motion characteristics of double buoys in ocean waves, a wave energy conversion system with permanent magnet tubular linear generator (PMTLG) is proposed to convert ocean wave energy into electricity. The wave energy conversion system was installed in the Yellow Sea near Lianyungang, China. The ocean test re- suits indicate that it had dynamic and static performance, and obtained an expected amount of electricity. The calcu- lation result indicates the average output power was about 1 000 W, and the conversion efficiency from wave en- ergy into electricity was 1.4%. In addition, the wireless data communication, mechanics and oceanography were also discussed.
基金The Swedish Research Council for their financial support
文摘This paper presents calculations of the varying inductances profile for a synchronous linear surface mounted permanent magnet generator in an ABC reference system. Calculations are performed by utilizing the reluctance term, known from analytic calculations and finite element method simulations. With the inductance term identified, the voltage difference between the generator’s no load and load voltage can be calculated and an external circuit can be designed for optimal use of the generator. Two different operation intervals of the linear generator are considered and the results are discussed. The result indicates that time costly finite element simulations can be replaced with simple analytical calculations for a surface mounted permanent magnet linear generator.
基金Supported by the National Science Fund for Distinguished Young Scholars under Grant 52025073 and the Zhenjiang Key Research Program under Grant GY2020011.
文摘A modified four-dimensional linear active disturbance rejection control(LADRC)strategy is proposed for a dual three-phase permanent magnet synchronous generator(DTP-PMSG)system to reduce cross-coupling between the d and q axis currents in the d-q subspace and harmonic currents in the x-y subspace.In the d-q subspace,the proposed strategy uses a model-based LADRC to enhance the decoupling effect between the d and q axes and the disturbance rejection ability against parameter variation.In the x-y subspace,the 5th and 7th harmonic current suppression abilities are improved by using quasi-resonant units parallel to the extended state observer of the traditional LADRC.The proposed modified LADRC strategy improved both the steady-state performance and dynamic response of the DTP-PMSG system.The experimental results demonstrate that the proposed strategy is both feasible and effective.
基金supported by the Major Program of National Natural Science Foundation of China(No.U2166601)the General Program of National Natural Science Foundation of China(No.52077196).
文摘In recent years, with the growth of wind energy resources,the capability of wind farms to damp low-frequency oscillations(LFOs) has provided a notable advantage for the stabilityenhancement of the modern power grid. Meanwhile, owingto variations in the power system operating point (OP), thedamping characteristics of LFOs may be affected adversely. Inthis respect, this paper presents a coordinated robust proportional-integral-derivative (PID) based damping control approachfor permanent magnet synchronous generators (PMSGs)to effectively stabilize LFOs, while considering power system operationaluncertainties in the form of a polytopic model constructedby linearizing the power system under a given set ofOPs. The proposed approach works by modulating the DC-linkvoltage control loop of the grid-side converter (GSC) via a supplementaryPID controller, which is synthesized by transformingthe design problem into H-infinity static output feedback(SOF) control methodology. The solution of H-infinity SOF controlproblem involves satisfying linear matrix inequality (LMI)constraints based on the parameter-dependent Lyapunov functionto ensure asymptotic stability such that the minimal H-infinityperformance objective is simultaneously accomplished forthe entire polytope. The coordinated damping controllers forthe multiple wind farms are then designed sequentially by usingthe proposed approach. Eigenvalue analysis confirms the improveddamping characteristics of the closed-loop system forseveral representative OPs. Afterward, the simulation results, includingthe performance comparison with existing approaches,validate the higher robustness of the proposed approach for awide range of operating scenarios.
基金This work was supported in part by the National Natural Science Foundation of China under Grant 51767018,in part by the Scientific research project of Education Department of Gansu Province under Grant 2017A-012.
文摘Aiming at the problem of poor system dynamic performance caused by low parameter matching in the coordinated control of Stirling engine and linear generator in the starting stage control of free piston Stirling linear generator system,a joint control method of free piston Stirling permanent magnet synchronous linear generator system based on field orientation control is proposed,based on the theoretical derivation of the mathematical model of the system and the principle of controller parameters setting,the simulation experiments of the system starting stage under several Stirling engine working conditions are carried out under simulation.The experimental results show that the stability and rapidity of the system are improved,and the dynamic response speed of generator parameters under different working conditions is accelerated,what fully verifies the correctness and effectiveness of the method.It provides an effective way to improve the control performance of the system and stabilize the power generation operation.
文摘In this paper,the method for the nonlinear control design of a permanent magnet synchronous generator based-wind energy conversion system(WECS)is proposed in order to obtain robustness against disturbances and harvest a maximum power from a typical stochastic wind environment.The technique overcomes both the problem of nonlinearity and the uncertainty of the parameter compared to such classical control designs based on traditional control techniques.The method is based on the differential geometric feedback linearization technique(DGT)and the Lyapunov theory.The results obtained show the effectiveness and performance of the proposed approach.
文摘摩擦力是影响直线伺服系统低速运行与点对点定位精度的主要非线性扰动。广义麦克斯韦(generalized Maxwellslip,GMS)摩擦模型虽然可以准确描述摩擦特性用于前馈补偿,但其存在切换点过渡时振荡的问题,同时易受测量噪声和摩擦参数变化等影响。为此,该文提出基于平滑GMS模型和改进扩张状态观测器(extended state observer,ESO)的复合摩擦补偿策略。首先,引入过渡用双曲正切函数以解决GMS模型中在切换点的反复穿越问题,并给出该模型的离线辨识方法。其次,设计基于模型信息的四阶ESO补偿剩余摩擦力与未知扰动,并引入切比雪夫滤波器整定观测器增益,以降低扰动观测与噪声敏感之间的冲突。为验证所提摩擦补偿策略的有效性,在小型高精度永磁同步直线电机定位平台上进行定位实验。实验结果验证了所提摩擦补偿策略的可行性和有效性。
基金the Shanghai Science and Technology Commission(No.19511108500).
文摘Free-piston engine generators (FPEGs) can be applied as decarbonized range extenders for electric vehicles because of their high thermal efficiency, low friction loss, and ultimate fuel flexibility. In this paper, a parameter-decoupling approach is proposed to model the design of an FPEG. The parameter-decoupling approach first divides the FPEG into three parts: a two-stroke engine, an integrated scavenging pump, and a linear permanent magnet synchronous machine (LPMSM). Then, each of these is designed according to predefined specifications and performance targets. Using this decoupling approach, a numerical model of the FPEG, including the three aforementioned parts, was developed. Empirical equations were adopted to design the engine and scavenging pump, while special considerations were applied for the LPMSM. A finite element model with a multi-objective genetic algorithm was adopted for its design. The finite element model results were fed back to the numerical model to update the LPMSM with increased fidelity. The designed FPEG produced 10.2 kW of electric power with an overall system efficiency of 38.5% in a stable manner. The model provides a solid foundation for the manufacturing of related FPEG prototypes.