期刊文献+
共找到5,469篇文章
< 1 2 250 >
每页显示 20 50 100
Disturbances rejection optimization based on improved two-degree-of-freedom LADRC for permanent magnet synchronous motor systems 被引量:1
1
作者 Chenggang Wang Jianhu Yan +2 位作者 Wenlong Li Liang Shan Le Sun 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第3期518-531,共14页
Permanent magnet synchronous motor(PMSM)speed control systems with conventional linear active disturbance rejection control(CLADRC)strategy encounter issues regarding the coupling between dynamic response and disturba... Permanent magnet synchronous motor(PMSM)speed control systems with conventional linear active disturbance rejection control(CLADRC)strategy encounter issues regarding the coupling between dynamic response and disturbance suppression and have poor performance in suppressing complex nonlinear disturbances.In order to address these issues,this paper proposes an improved two-degree-of-freedom LADRC(TDOF-LADRC)strategy,which can enhance the disturbance rejection performance of the system while decoupling entirely the system's dynamic and anti-disturbance performance to boost the system robustness and simplify controller parameter tuning.PMSM models that consider total disturbances are developed to design the TDOF-LADRC speed controller accurately.Moreover,to evaluate the control performance of the TDOF-LADRC strategy,its stability is proven,and the influence of each controller parameter on the system control performance is analyzed.Based on it,a comparison is made between the disturbance observation ability and anti-disturbance performance of TDOF-LADRC and CLADRC to prove the superiority of TDOF-LADRC in rejecting disturbances.Finally,experiments are performed on a 750 W PMSM experimental platform,and the results demonstrate that the proposed TDOF-LADRC exhibits the properties of two degrees of freedom and improves the disturbance rejection performance of the PMSM system. 展开更多
关键词 permanent magnet synchronous motor(PMSM) Active disturbance rejection control(ADRC) Disturbance observer Two-degree-of-freedom control ANTI-DISTURBANCE
下载PDF
Review of Field Weakening Control Strategies of Permanent Magnet Synchronous Motors
2
作者 Runze Jing Gaolin Wang +1 位作者 Guoqiang Zhang Dianguo Xu 《CES Transactions on Electrical Machines and Systems》 EI CSCD 2024年第3期319-331,共13页
Due to high power density,high efficiency,and accurate control performance,permanent magnet synchronous motors(PMSMs)have been widely adopted in equipment manufacturing and energy transformation fields.To expand the s... Due to high power density,high efficiency,and accurate control performance,permanent magnet synchronous motors(PMSMs)have been widely adopted in equipment manufacturing and energy transformation fields.To expand the speed range under finite DC-bus voltage,extensive research on field weakening(FW)control strategies has been conducted.This paper summarizes the major FW control strategies of PMSMs,which are categorized into calculation-based methods,voltage closed-loop control methods,and model predictive control related methods.The existing strategies are analyzed and compared according to performance,robustness,and execution difficulty,which can facilitate the implementation of FW control. 展开更多
关键词 Calculation-based methods Field weakening control Model predictive control permanent magnet synchronous motor OVERMODULATION Voltage closed-loop control
下载PDF
Finite-Control-Set Model Predictive Control of Permanent Magnet Synchronous Motor Drive Systems——An Overview 被引量:6
3
作者 Teng Li Xiaodong Sun +3 位作者 Gang Lei Zebin Yang Youguang Guo Jianguo Zhu 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2022年第12期2087-2105,共19页
Permanent magnet synchronous motors(PMSMs)have been widely employed in the industry. Finite-control-set model predictive control(FCS-MPC), as an advanced control scheme, has been developed and applied to improve the p... Permanent magnet synchronous motors(PMSMs)have been widely employed in the industry. Finite-control-set model predictive control(FCS-MPC), as an advanced control scheme, has been developed and applied to improve the performance and efficiency of the holistic PMSM drive systems. Based on the three elements of model predictive control, this paper provides an overview of the superiority of the FCS-MPC control scheme and its shortcomings in current applications. The problems of parameter mismatch, computational burden, and unfixed switching frequency are summarized. Moreover, other performance improvement schemes, such as the multi-vector application strategy, delay compensation scheme, and weight factor adjustment, are reviewed. Finally, future trends in this field is discussed, and several promising research topics are highlighted. 展开更多
关键词 Computational burden finite control set(FCS) model predictive control(MPC) permanent magnet synchronous motor(PMSM) robust operation switching frequency
下载PDF
Predictive control of a chaotic permanent magnet synchronous generator in a wind turbine system 被引量:1
4
作者 Manal Messadi Adel Mellit +1 位作者 Karim Kemih Malek Ghanes 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第1期177-183,共7页
This paper investigates how to address the chaos problem in a permanent magnet synchronous generator(PMSG) in a wind turbine system. Predictive control approach is proposed to suppress chaotic behavior and make oper... This paper investigates how to address the chaos problem in a permanent magnet synchronous generator(PMSG) in a wind turbine system. Predictive control approach is proposed to suppress chaotic behavior and make operating stable;the advantage of this method is that it can only be applied to one state of the wind turbine system. The use of the genetic algorithms to estimate the optimal parameter values of the wind turbine leads to maximization of the power generation.Moreover, some simulation results are included to visualize the effectiveness and robustness of the proposed method. 展开更多
关键词 permanent magnet synchronous generator chaotic system genetic algorithm predictive control
下载PDF
Model predictive torque control of permanent magnet synchronous motor system driven by matrix converter 被引量:1
5
作者 TENG Qing fang LU Chang 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2018年第3期293-301,共9页
Employing matrix converter (MC) as driving mode, the strategy of model predictive torque control (MPTC) is proposed for three phase permanent magnet synchronous motor (PMSM) system. MC is applied instead of conv... Employing matrix converter (MC) as driving mode, the strategy of model predictive torque control (MPTC) is proposed for three phase permanent magnet synchronous motor (PMSM) system. MC is applied instead of conventional AC DC AC converter to increase the power factor (PF) of the system input side. MPTC is used to select optimal voltage space vector to enable the system to have satisfactory torque and flux control effect. The resultant MPTC strategy not only makes the MC fed PMSM system operate reliably and have perfect control performance, but also makes the PF of the system input side be 1. Compared with direct torque control (DTC), the proposed MPTC strategy guarantees that MC fed PMSM has better command following characteristics in the presence of variation of load torque and tracking reference speed. Simulation results verify the feasibility and effectiveness of the proposed strategy. 展开更多
关键词 permanent magnet synchronous motor (PMSM) matrix converter (MC) model predictive torque control (MPTC)
下载PDF
Controlling chaos in permanent magnet synchronous motor based on finite-time stability theory 被引量:15
6
作者 韦笃取 张波 《Chinese Physics B》 SCIE EI CAS CSCD 2009年第4期1399-1403,共5页
This paper reports that the performance of permanent magnet synchronous motor (PMSM) degrades due to chaos when its systemic parameters fall into a certain area. To control the undesirable chaos in PMSM, a nonlinear... This paper reports that the performance of permanent magnet synchronous motor (PMSM) degrades due to chaos when its systemic parameters fall into a certain area. To control the undesirable chaos in PMSM, a nonlinear controller, which is simple and easy to be constructed, is presented to achieve finite-time chaos control based on the finite-time stability theory. Computer simulation results show that the proposed controller is very effective. The obtained results may help to maintain the industrial servo driven system's security operation. 展开更多
关键词 chaos control finite-time stability theory permanent magnet synchronous motor
下载PDF
Full-order sliding mode control of uncertain chaos in a permanent magnet synchronous motor based on a fuzzy extended state observer 被引量:9
7
作者 陈强 南余荣 +1 位作者 郑恒火 任雪梅 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第11期157-162,共6页
A full-order sliding mode control based on a fuzzy extended state observer is proposed to control the uncertain chaos in the permanent magnet synchronous motor. Through a simple coordinate transformation, the chaotic ... A full-order sliding mode control based on a fuzzy extended state observer is proposed to control the uncertain chaos in the permanent magnet synchronous motor. Through a simple coordinate transformation, the chaotic PMSM model is transformed into the Brunovsky canonical form, which is more suitable for the controller design. Based on the fuzzy control theory, a fuzzy extended state observer is developed to estimate the unknown states and uncertainties, and the restriction that all the system states should be completely measurable is avoided. Thereafter, a full-order sliding mode controller is designed to ensure the convergence of all system states without any chattering problem. Comparative simulations show the effectiveness and superior performance of the proposed control method. 展开更多
关键词 permanent magnet synchronous motor chaotic system sliding mode control fuzzy extended stateobserver
下载PDF
Fractional-order permanent magnet synchronous motor and its adaptive chaotic control 被引量:9
8
作者 李春来 禹思敏 罗晓曙 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第10期168-173,共6页
In this paper we investigate the chaotic behaviors of the fractional-order permanent magnet synchronous motor(PMSM).The necessary condition for the existence of chaos in the fractional-order PMSM is deduced.And an a... In this paper we investigate the chaotic behaviors of the fractional-order permanent magnet synchronous motor(PMSM).The necessary condition for the existence of chaos in the fractional-order PMSM is deduced.And an adaptivefeedback controller is developed based on the stability theory for fractional systems.The presented control scheme,which contains only one single state variable,is simple and flexible,and it is suitable both for design and for implementation in practice.Simulation is carried out to verify that the obtained scheme is efficient and robust against external interference for controlling the fractional-order PMSM system. 展开更多
关键词 FRACTIONAL-ORDER permanent magnet synchronous motor adaptive chaotic control
下载PDF
Impulsive control of permanent magnet synchronous motors with parameters uncertainties 被引量:6
9
作者 李东 王时龙 +2 位作者 张小洪 杨丹 王慧 《Chinese Physics B》 SCIE EI CAS CSCD 2008年第5期1678-1684,共7页
The permanent magnet synchronous motors (PMSMs) may have chaotic behaviours for the uncertain values of parameters or under certain working conditions, which threatens the secure and stable operation of motor-driven... The permanent magnet synchronous motors (PMSMs) may have chaotic behaviours for the uncertain values of parameters or under certain working conditions, which threatens the secure and stable operation of motor-driven. It is important to study methods of controlling or suppressing chaos in PMSMs. In this paper, robust stabilities of PMSM with parameter uncertainties are investigated. After the uncertain matrices which represent the variable system parameters are formulated through matrix analysis, a novel asymptotical stability criterion is established. Some illustrated examples are also given to show the effectiveness of the obtained results. 展开更多
关键词 permanent magnet synchronous motors impulsive control parameters uncertainties robust stability
下载PDF
Application of neural networks for permanent magnet synchronous motor direct torque control 被引量:6
10
作者 Zhang Chunmei Liu Heping +1 位作者 Chen Shujin Wang Fangjun 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2008年第3期555-561,共7页
Neural networks require a lot of training to understand the model of a plant or a process. Issues such as learning speed, stability, and weight convergence remain as areas of research and comparison of many training a... Neural networks require a lot of training to understand the model of a plant or a process. Issues such as learning speed, stability, and weight convergence remain as areas of research and comparison of many training algorithms. The application of neural networks to control interior permanent magnet synchronous motor using direct torque control (DTC) is discussed. A neural network is used to emulate the state selector of the DTC. The neural networks used are the back-propagation and radial basis function. To reduce the training patterns and increase the execution speed of the training process, the inputs of switching table are converted to digital signals, i.e., one bit represent the flux error, one bit the torque error, and three bits the region of stator flux. Computer simulations of the motor and neural-network system using the two approaches are presented and compared. Discussions about the back-propagation and radial basis function as the most promising training techniques are presented, giving its advantages and disadvantages. The system using back-propagation and radial basis function networks controller has quick parallel speed and high torque response. 展开更多
关键词 interior permanent magnet synchronous motor radial basis function neural network torque control direct torque control.
下载PDF
Maximum Power Point Tracking in Variable Speed Wind Turbine Based on Permanent Magnet Synchronous Generator Using Maximum Torque Sliding Mode Control Strategy 被引量:3
11
作者 Esmaeil Ghaderi Hossein Tohidi Behnam Khosrozadeh 《Journal of Electronic Science and Technology》 CAS CSCD 2017年第4期391-399,共9页
The present study was carried out in order to track the maximum power point in a variable speed turbine by minimizing electromechanical torque changes using a sliding mode control strategy. In this strategy, first, th... The present study was carried out in order to track the maximum power point in a variable speed turbine by minimizing electromechanical torque changes using a sliding mode control strategy. In this strategy, first, the rotor speed is set at an optimal point for different wind speeds. As a result of which, the tip speed ratio reaches an optimal point, mechanical power coefficient is maximized, and wind turbine produces its maximum power and mechanical torque. Then, the maximum mechanical torque is tracked using electromechanical torque. In this technique, tracking error integral of maximum mechanical torque, the error, and the derivative of error are used as state variables. During changes in wind speed, sliding mode control is designed to absorb the maximum energy from the wind and minimize the response time of maximum power point tracking(MPPT). In this method, the actual control input signal is formed from a second order integral operation of the original sliding mode control input signal. The result of the second order integral in this model includes control signal integrity, full chattering attenuation, and prevention from large fluctuations in the power generator output. The simulation results, calculated by using MATLAB/m-file software, have shown the effectiveness of the proposed control strategy for wind energy systems based on the permanent magnet synchronous generator(PMSG). 展开更多
关键词 Maximum power point tracking permanent magnet synchronous generator(PMSG) sliding mode control wind turbine
下载PDF
Position Sensorless Control for Permanent Magnet Synchronous Motor Using Sliding Mode Observer 被引量:2
12
作者 陈益广 傅涛 李响 《Transactions of Tianjin University》 EI CAS 2005年第5期338-342,共5页
An approach of position sensorless control for permanent magnet synchronous motor ( PMSM ) is put forward based on a sliding mode observer. The mathematical model of PMSM in a stationary αβ reference frame is adop... An approach of position sensorless control for permanent magnet synchronous motor ( PMSM ) is put forward based on a sliding mode observer. The mathematical model of PMSM in a stationary αβ reference frame is adopted, and the system is controlled by the digital signal processor ( DSP; TMS320LF2407 according to the control achieve closed loop operation of the motor, the stator theory of sliding mode observer. In order to magnetic field should be vertical with the rotor magnetic field and be synchronous with rotor rotating, so the position and speed of PMSM is estimated in real time and the estimated position is modified continuously. The simulation results indicate that the proposed observer has high precision is more robust to the parametric variation and load in estimation of PMSM position and speed, and torque disturbance. 展开更多
关键词 permanent magnet synchronous motor position sensorless control sliding mode observer digital signal processor
下载PDF
Impulsive control for permanent magnet synchronous motors with uncertainties:LMI approach 被引量:1
13
作者 李东 王时龙 +1 位作者 张小洪 杨丹 《Chinese Physics B》 SCIE EI CAS CSCD 2010年第1期160-166,共7页
A permanent magnet synchronous motor (PMSM) may have chaotic behaviours under certain working conditions, especially for uncertain values of parameters, which threatens the security and stability of motor-driven ope... A permanent magnet synchronous motor (PMSM) may have chaotic behaviours under certain working conditions, especially for uncertain values of parameters, which threatens the security and stability of motor-driven operation. Hence, it is important to study methods of controlling or suppressing chaos in PMSMs. In this paper, the stability of a PMSM with parameter uncertainties is investigated. After uncertain matrices which represent the variable system parameters are formulated through matrix analysis, a novel asymptotical stability criterion is established by employing the method of Lyapunov functions and linear matrix inequality technology. An example is also given to illustrate the effectiveness of our results. 展开更多
关键词 permanent magnet synchronous motors impulsive control UNCERTAINTY linear matrix inequality
下载PDF
Vector control of permanent magnet synchronous motor based on dynamic matrix control 被引量:2
14
作者 WANG Rui-min ZHU Qi-xian DONG Hai-ying 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2017年第4期340-346,共7页
Aiming at the control problem of strongly nonlinear and coupled permanent magnet synchronous motor(PMSM)oil rig,this paper presents a predictive control method based on dynamic matrix model.In this method,the dynamic ... Aiming at the control problem of strongly nonlinear and coupled permanent magnet synchronous motor(PMSM)oil rig,this paper presents a predictive control method based on dynamic matrix model.In this method,the dynamic matrix algorithm using multistep prediction technique is applied to the speed loop control of the motor vector control.And its control effect is compared with the traditional proportional integral(PI)control of the motor.By comparing the initial dynamic response and the steady-state recovery under load interference of the two methods,it is shown that the dynamic response and the robustness of the motor controlled by the new method is better than that controlled by conventional PI method.And the feasibility of new control in the application of PMSM oil rig is verified. 展开更多
关键词 permanent magnet synchronous motor (PMSM) predictive control dynamic matrix speed loop
下载PDF
Fault-Tolerant Operation of Five-Phase Permanent Magnet Synchronous Motor with Independent Phase Driving Control 被引量:3
15
作者 Yongqing Wei Mingzhong Qiao Peng Zhu 《CES Transactions on Electrical Machines and Systems》 CSCD 2022年第1期105-110,共6页
The multi-phase motor drive system with multiple H-bridge power supply has high fault tolerance,which is widely used in aerospace,electric vehicle,ship integrated power system and other fields.In this paper,a fault-to... The multi-phase motor drive system with multiple H-bridge power supply has high fault tolerance,which is widely used in aerospace,electric vehicle,ship integrated power system and other fields.In this paper,a fault-tolerant control strategy based on decoupling control and stator current compensation is proposed for the propulsion system of five-phase PMSM with independent neutrals.Firstly,the mathematical model of PMSM is established by using vector space decoupling method;Secondly,a stator current compensation method is adopted to carry out fault-tolerant control after the motor has single-phase and two-phase open-circuit faults and the fault-tolerant control system based on decoupling control is established;Finally,the decoupling control model and the fault-tolerant control of stator current compensation are verified by the simulation and experiment.The simulation and experiment results show that the method can reduce the torque ripple caused by the stator winding open-circuit fault,and the operation performance of the motor under fault condition is significantly improved. 展开更多
关键词 Five-Phase permanent magnet synchronous motor H-bridge inverter Fault-tolerant control Vector space decoupling
下载PDF
A novel fuzzy logic direct torque controller for a permanent magnet synchronous motor with a field programmable gate array 被引量:1
16
作者 陈永军 《Journal of Chongqing University》 CAS 2008年第3期228-233,共6页
A high-performance digital servo system built on the platform of a field programmable gate array (FPGA),a fully digitized hardware design scheme of a direct torque control (DTC) and a low speed permanent magnet synchr... A high-performance digital servo system built on the platform of a field programmable gate array (FPGA),a fully digitized hardware design scheme of a direct torque control (DTC) and a low speed permanent magnet synchronous motor (PMSM) is proposed. The DTC strategy of PMSM is described with Verilog hardware description language and is employed on-chip FPGA in accordance with the electronic design automation design methodology. Due to large torque ripples in low speed PMSM,the hysteresis controller in a conventional PMSM DTC was replaced by a fuzzy controller. This FPGA scheme integrates the direct torque controller strategy,the time speed measurement algorithm,the fuzzy regulating technique and the space vector pulse width modulation principle. Experimental results indicate the fuzzy controller can provide a controllable speed at 20 r min-1 and torque at 330 N m with satisfactory dynamic and static performance. Furthermore,the results show that this new control strategy decreases the torque ripple drastically and enhances control performance. 展开更多
关键词 fuzzy control direct torque control field programmable gate array permanent magnet synchronous motor
下载PDF
Research on Open-circuit Fault Tolerant Control of Six-phase Permanent Magnet Synchronous Machine Based on Fifth Harmonic Current Injection 被引量:3
17
作者 Zhifeng Zhang Yue Wu +1 位作者 Hequn Su Quanzeng Sun 《CES Transactions on Electrical Machines and Systems》 CSCD 2022年第3期306-314,共9页
This paper proposes a novel control approach for fault-tolerant control of dual three-phase permanent magnet synchronous motor(PMSM) under one-phase open-circuit fault.A modified six-phase static coordinate transforma... This paper proposes a novel control approach for fault-tolerant control of dual three-phase permanent magnet synchronous motor(PMSM) under one-phase open-circuit fault.A modified six-phase static coordinate transformation matrix and an extended rotating coordinate transformation matrix are investigated considering the influence of the fifth harmonic space on fault-tolerant control. These mathematical models are further analyzed in the fundamental space and the fifth harmonic space after the fault and to eliminate the coupling between the d-q axis voltage equation in the fundamental wave space and the d-q axis voltage equation in the fifth harmonic space, a secondary rotation coordinate transformation matrix is proposed. To achieve the purpose of reducing torque ripple, the fault-tolerant control method proposed in this paper not only takes the minimum copper loss as the constraint condition, but also injects the fifth harmonic current. The experimental result of current and torque is used to verify the accuracy of fault-tolerant control. 展开更多
关键词 Extended rotating coordinate transformation matrix Fault-tolerant control Fifth harmonic current injection Modified six-phase static coordinate transformation matrix Dual three-phase permanent magnet synchronous motor Torque ripple
下载PDF
Model predictive flux control of permanent magnet synchronous motor driven by three-level inverter based on fine-division strategy 被引量:1
18
作者 MIAO Zhongcui LI Haiyuan +1 位作者 HE Yangyang WANG Yunkun 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2022年第4期439-450,共12页
Aiming at the difficulty of setting the weight coefficient in the value function of model predictive torque control(MPTC)for permanent magnet synchronous motor(PMSM)driven by three-level inverter,a fine-division model... Aiming at the difficulty of setting the weight coefficient in the value function of model predictive torque control(MPTC)for permanent magnet synchronous motor(PMSM)driven by three-level inverter,a fine-division model predictive flux control(MPFC)method is proposed.First,establish a mathematical model between the motor torque and the stator flux linkage according to the mathematical equations of PMSM.Thus,the control of the motor torque and stator flux linkage in the MPTC is transformed into the control of a single stator flux linkage vector,omitting the cumbersome weight setting process in the traditional MPTC.The midpoint potential control strategy is proposed,which uses the characteristics of redundant small vectors to balance the midpoint potential.After that,a fine-division strategy is proposed,which effectively reduces the number of candidate vectors and the computational burden of the system.Finally,the proposed MPFC is compared with MPTC by simulation.The results show that the proposed fine-division MPFC effectively reduces the system calculation,and has the advantages of simple principle and better dynamic and steady-state control performance.The feasibility of the control strategy is verified. 展开更多
关键词 permanent magnet synchronous motor(PMSM) three-level inverter model predictive flux control(MPFC) weight coefficient midpoint potential
下载PDF
Cascaded Model Predictive Control of Six-phase Permanent Magnet Synchronous Motor with Fault Tolerant Ability 被引量:1
19
作者 Ling Feng Zhaohui Wang +1 位作者 Jianghua Feng Wensheng Song 《CES Transactions on Electrical Machines and Systems》 CSCD 2023年第3期311-319,共9页
In the field of high-power electric drives, multiphase motors have the advantages of high power-density, excellent fault tolerance and control flexibility. But their decoupling control and modulation process are much ... In the field of high-power electric drives, multiphase motors have the advantages of high power-density, excellent fault tolerance and control flexibility. But their decoupling control and modulation process are much more complicated compared with three-phase motors due to the increased degree of freedom. Finite control set model predictive control can reduce the difficulties of controlling six-phase motors because it does not require modulation process. In this paper, a cascaded model predictive control strategy is proposed for the optimal control of high-power six-phase permanent magnet synchronous motors. Firstly, the current prediction model of torque and harmonic subspaces are established by decoupling the six-phase spatial variables. Secondly, a cascaded cost function with fault-tolerant capability is proposed to eliminate the weighting factor in the cost function. And finally, the proposed strategy is demonstrated through theoretical analysis and experiments. It is validated that the proposed method is able to maintain excellent steady-state control accuracy and fast dynamic response while significantly reduce the control complexity of the system. Besides, it can easily achieve fault-tolerant operation under open-phase fault. 展开更多
关键词 Fault-tolerant control Model predictive control permanent magnet synchronous motor Six-phase motor Weighting factor
下载PDF
Adaptive Gain Tuning Rule for Nonlinear Sliding-mode Speed Control of Encoderless Three-phase Permanent Magnet Assisted Synchronous Motor 被引量:1
20
作者 Ghada A.Abdel Aziz Rehan Ali Khan 《CES Transactions on Electrical Machines and Systems》 CSCD 2023年第3期301-310,共10页
In this paper, an adaptive gain tuning rule is designed for the nonlinear sliding mode speed control(NSMSC) in order to enhance the dynamic performance and the robustness of the permanent magnet assisted synchronous r... In this paper, an adaptive gain tuning rule is designed for the nonlinear sliding mode speed control(NSMSC) in order to enhance the dynamic performance and the robustness of the permanent magnet assisted synchronous reluctance motor(PMa-Syn RM) with considering the parameter uncertainties. A nonlinear sliding surface whose parameters are altering with time is designed at first. The proposed NSMSC can minimize the settling time without any overshoot via utilizing a low damping ratio at starting along with a high damping ratio as the output approaches the target set-point. In addition, it eliminates the problem of the singularity with the upper bound of an uncertain term that is hard to be measured practically as well as ensures a rapid convergence in finite time, through employing a simple adaptation law. Moreover, for enhancing the system efficiency throughout the constant torque region, the control system utilizes the maximum torque per ampere technique. The nonlinear sliding surface stability is assured via employing Lyapunov stability theory. Furthermore, a simple sliding mode estimator is employed for estimating the system uncertainties. The stability analysis and the experimental results indicate the effectiveness along with feasibility of the proposed speed estimation and the NSMSC approach for a 1.1-k W PMa-Syn RM under different speed references, electrical and mechanical parameters disparities, and load disturbance conditions. 展开更多
关键词 permanent magnet assisted synchronous reluctance motor Nonlinear sliding mode speed control Speed estimation Parameter uncertainties Sliding mode estimator
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部