期刊文献+
共找到6,989篇文章
< 1 2 250 >
每页显示 20 50 100
Porosity, permeability and rock mechanics of Lower Silurian Longmaxi Formation deep shale under temperature-pressure coupling in the Sichuan Basin, SW China 被引量:3
1
作者 SUN Chuanxiang NIE Haikuan +5 位作者 SU Haikun DU Wei LU Ting CHEN Yalin LIU Mi LI Jingchang 《Petroleum Exploration and Development》 2023年第1期85-98,共14页
To investigate the porosity, permeability and rock mechanics of deep shale under temperature-pressure coupling, we selected the core samples of deep shale from the Lower Silurian Longmaxi Formation in the Weirong and ... To investigate the porosity, permeability and rock mechanics of deep shale under temperature-pressure coupling, we selected the core samples of deep shale from the Lower Silurian Longmaxi Formation in the Weirong and Yongchuan areas of the Sichuan Basin for porosity and permeability experiments and a triaxial compression and sound wave integration experiment at the maximum temperature and pressure of 120 ℃ and 70 MPa. The results show that the microscopic porosity and permeability change and the macroscopic rock deformation are mutually constrained, both showing the trend of steep and then gentle variation. At the maximum temperature and pressure, the porosity reduces by 34%–71%, and the permeability decreases by 85%–97%. With the rising temperature and pressure, deep shale undergoes plastic deformation in which organic pores and clay mineral pores are compressed and microfractures are closed, and elastic deformation in which brittle mineral pores and rock skeleton particles are compacted. Compared with previous experiments under high confining pressure and normal temperature,the experiment under high temperature and high pressure coupling reveals the effect of high temperature on stress sensitivity of porosity and permeability. High temperature can increase the plasticity of the rock, intensify the compression of pores due to high confining pressure, and induce thermal stress between the rock skeleton particles, allowing the reopening of shale bedding or the creation of new fractures along weak planes such as bedding, which inhibits the decrease of permeability with the increase of temperature and confining pressure. Compared with the triaxial mechanical experiment at normal temperature, the triaxial compression experiment at high temperature and high pressure demonstrates that the compressive strength and peak strain of deep shale increase significantly due to the coupling of temperature and pressure. The compressive strength is up to 435 MPa and the peak strain exceeds 2%, indicating that high temperature is not conducive to fracture initiation and expansion by increasing rock plasticity. Lithofacies and mineral composition have great impacts on the porosity, permeability and rock mechanics of deep shale. Shales with different lithologies are different in the difficulty and extent of brittle failure. The stress-strain characteristics of rocks under actual geological conditions are key support to the optimization of reservoir stimulation program. 展开更多
关键词 Sichuan Basin Longmaxi formation deep shale gas POROSITY permeability rock mechanics high temperature and high pressure triaxial compression
下载PDF
Experimental study of the influencing factors and mechanisms of the pressure-reduction and augmented injection effect by nanoparticles in ultra-low permeability reservoirs
2
作者 Pan Wang Yu-Hang Hu +8 位作者 Liao-Yuan Zhang Yong Meng Zhen-Fu Ma Tian-Ru Wang Zi-Lin Zhang Ji-Chao Fang Xiao-Qiang Liu Qing You Yan Zhang 《Petroleum Science》 SCIE EI CAS CSCD 2024年第3期1915-1927,共13页
Nanoparticles(NPs)have gained significant attention as a functional material due to their ability to effectively enhance pressure reduction in injection processes in ultra-low permeability reservoirs.NPs are typically... Nanoparticles(NPs)have gained significant attention as a functional material due to their ability to effectively enhance pressure reduction in injection processes in ultra-low permeability reservoirs.NPs are typically studied in controlled laboratory conditions,and their behavior in real-world,complex environments such as ultra-low permeability reservoirs,is not well understood due to the limited scope of their applications.This study investigates the efficacy and underlying mechanisms of NPs in decreasing injection pressure under various injection conditions(25—85℃,10—25 MPa).The results reveal that under optimal injection conditions,NPs effectively reduce injection pressure by a maximum of 22.77%in core experiment.The pressure reduction rate is found to be positively correlated with oil saturation and permeability,and negatively correlated with temperature and salinity.Furthermore,particle image velocimetry(PIV)experiments(25℃,atmospheric pressure)indicate that the pressure reduction is achieved by NPs through the reduction of wall shear resistance and wettability change.This work has important implications for the design of water injection strategies in ultra-low permeability reservoirs. 展开更多
关键词 NANOPARTICLE pressure reduction Augmented injection Ultra-low permeability reservoir
下载PDF
The AVO Effect of Formation Pressure on Time-Lapse Seismic Monitoring in Marine Carbon Dioxide Storage
3
作者 Fan Wu Qingping Li +1 位作者 Yufa He Jingye Li 《哈尔滨工程大学学报(英文版)》 CSCD 2024年第3期645-655,共11页
The phase change of CO_(2) has a significant bearing on the siting, injection, and monitoring of storage. The phase state of CO_(2) is closely related to pressure. In the process of seismic exploration, the informatio... The phase change of CO_(2) has a significant bearing on the siting, injection, and monitoring of storage. The phase state of CO_(2) is closely related to pressure. In the process of seismic exploration, the information of formation pressure can be response in the seismic data. Therefore, it is possible to monitor the formation pressure using time-lapse seismic method. Apart from formation pressure, the information of porosity and CO_(2) saturation can be reflected in the seismic data. Here, based on the actual situation of the work area, a rockphysical model is proposed to address the feasibility of time-lapse seismic monitoring during CO_(2) storage in the anisotropic formation. The model takes into account the formation pressure, variety minerals composition, fracture, fluid inhomogeneous distribution, and anisotropy caused by horizontal layering of rock layers(or oriented alignment of minerals). From the proposed rockphysical model and the well-logging, cores and geological data at the target layer, the variation of P-wave and S-wave velocity with formation pressure after CO_(2) injection is calculated. And so are the effects of porosity and CO_(2) saturation. Finally, from anisotropic exact reflection coefficient equation, the reflection coefficients under different formation pressures are calculated. It is proved that the reflection coefficient varies with pressure. Compared with CO_(2) saturation, the pressure has a greater effect on the reflection coefficient. Through the convolution model, the seismic record is calculated. The seismic record shows the difference with different formation pressure. At present, in the marine CO_(2) sequestration monitoring domain, there is no study involving the effect of formation pressure changes on seismic records in seafloor anisotropic formation. This study can provide a basis for the inversion of reservoir parameters in anisotropic seafloor CO_(2) reservoirs. 展开更多
关键词 Time-lapse seismic monitoring Marine carbon dioxide storage AVO modeling formation pressure Anisotropic Rockphysical model
下载PDF
Formation permeability evaluation and productivity prediction based on mobility from pressure measurement while drilling
4
作者 SHI Xinlei CUI Yunjiang +2 位作者 XU Wankun ZHANG Jiansheng GUAN Yeqin 《Petroleum Exploration and Development》 2020年第1期146-153,共8页
Based on the measurement mechanism of mobility in pressure measurement while drilling, through analyzing a large number of mobility data, it is found that under the condition of water-based mud drilling, the product o... Based on the measurement mechanism of mobility in pressure measurement while drilling, through analyzing a large number of mobility data, it is found that under the condition of water-based mud drilling, the product of mobility from pressure measurement while drilling and the viscosity of mud filtrate is infinitely close to the water phase permeability under the residual oil in relative permeability experiment. Based on this, a method converting the mobility from pressure measurement while drilling to core permeability is proposed, and the permeability based on Timur formula has been established. Application of this method in Penglai 19-9 oilfield of Bohai Sea shows:(1) Compared with the permeability calculated by the model of adjacent oilfields, the permeability calculated by this model is more consistent with the permeability calculated by core analysis.(2) Based on the new model, the correlation between the calculated mobility of well logging and the actual drilling specific productivity index bas been established. Compared with the relationship established by using the permeability model of an adjacent oilfield, the correlation of the new model is better.(3) Productivity of four directional wells was predicted, and the prediction results are in good agreement with the actual production after drilling. 展开更多
关键词 MOBILITY from pressure measurement WHILE drilling permeability IRREDUCIBLE water SATURATION Timur formula productivity prediction Penglai 19-9 OILFIELD
下载PDF
A simulation study of formation permeability as a function of methane hydrate concentration 被引量:1
5
作者 赵倩 邓克俊 刘学伟 《Applied Geophysics》 SCIE CSCD 2011年第2期101-109,176,共10页
We modeled and studied the permeability of methane hydrate bearing formations as a function of methane hydrate concentration by artificially varying the T2 distribution as well as using a tube-sphere model.We varied t... We modeled and studied the permeability of methane hydrate bearing formations as a function of methane hydrate concentration by artificially varying the T2 distribution as well as using a tube-sphere model.We varied the proportion of irreducible and movable water as well as the total porosity associated with the T2 distribution and found the normalized permeability as a function of methane hydrate concentration is dependent of these variations.Using a tube-sphere model,we increased the methane hydrate concentration by randomly placing methane hydrate crystals in the pore spaces and computed the permeability using either the Schlumberger T2 relaxation time formula or a direct calculation based on Darcy's law assuming Poiseuille flow.Earlier experimental measurements reported in the literature show there is a methane hydrate concentration range where the permeability remains relatively constant.We found that when the Schlumberger T2 relaxation time formula is used the simulation results show a curve of normalized permeability versus methane hydrate concentration quite close to that predicted by the Masuda model with N = 15.When the permeability was directly calculated based on Darcy's law,the simulation results show a much higher normalized permeability and only show a trend consistent with the experimental results,i.e.,with a permeability plateau,when the methane hydrate crystals are preferentially placed in the tubes,and the higher the preferential probability,the larger the range where the permeability has a plateau. 展开更多
关键词 Methane hydrate bearing formation permeability NMR T2 distribution.
下载PDF
An improved apparent permeability model considering full pore pressure range,variable intrinsic permeability and slippage coefficient 被引量:6
6
作者 Zhiyong Xiao Changsheng Wang +2 位作者 Gang Wang Yujing Jiang Junhong Yu 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2022年第6期1233-1244,共12页
Although the slippage effect has been extensively studied,most of the previous studies focused on the impact of the slippage effect on apparent permeability within a low pore pressure range,resulting in the inability ... Although the slippage effect has been extensively studied,most of the previous studies focused on the impact of the slippage effect on apparent permeability within a low pore pressure range,resulting in the inability of matching the evolution of permeability in the remaining pressure range.In this paper,a new apparent permeability model that reveals the evolution of permeability under the combined action of effective stress and slippage in the full pore pressure range was proposed.In this model,both intrinsic permeability and slippage coefficient are stress dependent.Three experimental tests with pore pressure lower than 2 MPa and a test with pore pressure at about 10 MPa using cores from the same origin under constant confining stress and constant effective stress are conducted.By comparing experimental data and another apparent permeability model,we proved the fidelity of our newly developed model.Furthermore,the contribution factor of the slippage effect Rslip is used to determine the low pore pressure limit with significant slippage effect.Our results show that both narrow initial pore size and high effective stress increase the critical pore pressure.Finally,the evolutions of the slippage coefficient and the intrinsic permeability under different boundary conditions were analyzed. 展开更多
关键词 Slippage effect Apparent permeability Contribution factor Critical pore pressure Intrinsic permeability
下载PDF
A formation pressure prediction method based on tectonic overpressure
7
作者 申波 张超谟 +1 位作者 毛志强 肖承文 《Applied Geophysics》 SCIE CSCD 2010年第4期376-383,401,共9页
Traditional formation pressure prediction methods all are based on the formation undercompaction mechanism and the prediction results are obviously low when predicting abnormally high pressure caused by compressional ... Traditional formation pressure prediction methods all are based on the formation undercompaction mechanism and the prediction results are obviously low when predicting abnormally high pressure caused by compressional structure overpressure.To eliminate this problem,we propose a new formation pressure prediction method considering compressional structure overpressure as the dominant factor causing abnormally high pressure.First,we establish a model for predicting maximum principal stress,this virtual maximum principal stress is calculated by a double stress field analysis.Then we predict the formation pressure by fitting the maximum principal stress with formation pressure. The real maximum principal stress can be determined by caculating the sum of the virtual maximum principal stresses.Practical application to real data from the A1 and A2 wells in the A gas field shows that this new method has higher accuracy than the traditional equivalent depth method. 展开更多
关键词 formation pressure UNDERCOMPACTION tectonic stress maximum principal stress conventional log data
下载PDF
Stress sensitivity of permeability in high-permeability sandstone sealed with microbially-induced calcium carbonate precipitation
8
作者 Chenpeng Song Derek Elsworthb 《Biogeotechnics》 2024年第1期3-10,共8页
Microbially induced carbonate precipitation(MICP)catalyzed by S.pasteurii has attracted considerable attention as a bio-cement that can both strengthen and seal geomaterials.We investigate the stress sensitivity of pe... Microbially induced carbonate precipitation(MICP)catalyzed by S.pasteurii has attracted considerable attention as a bio-cement that can both strengthen and seal geomaterials.We investigate the stress sensitivity of permeability reduction for the initially high-permeability Berea sandstone(initial permeability∼110 mD)under various durations of MICP-grouting treatment.The results indicate that after 2,4,6,8 and 10 cycles of MICP-grouting,the permeabilities decrease incrementally by 87.9%,60.9%,38.8%,17.3%,and then 5.4%compared to the pre-grouting condition.With increasing the duration of MICP-grouting,the sensitivity of permeability to changes in stress gradually decreases and becomes less hysteretic.This stress sensitivity of permeability is well represented by a power-law relationship with the coefficients representing three contrasting phases:an initial slow reduction,followed by a rapid drop,culminating in an asymptotic response.This variation behavior is closely related to the movement and dislocation of the quartz framework,which is controlled by the intergranular bio-cementation strength.Imaging by scanning electron microscopy(SEM)reveals the evolution of the stress sensitivity to permeability associated with the evolving microstructures after MICP-grouting.The initial precipitates of CaCO3 are dispersed on the surfaces of the quartz framework and occupy the pore space,which is initially limited in controlling and reducing the displacement between particles.As the precipitates continuously accumulate,the intergranular slot-shaped pore spaces are initially bonded by bio-CaCO3,with the bonding strength progressively enhanced with the expanding volume of bio-cementation.At this stage,the intergranular movement and dislocation caused by compaction are reduced,and the stress sensitivity of the permeability is significantly reduced.As these slot-shaped pore spaces are progressively filled by the bio-cement,the movement and dislocation caused by compaction become negligible and thus the stress sensitivity of permeability is minimized. 展开更多
关键词 Microbially-induced calcium carbonate precipitation(MICP) High-permeability sandstone permeability Confining pressure Stress sensitivity of permeability
下载PDF
Formation damage control of high permeability sandstone reservoir
9
作者 WANG Jian-hua YAN Jie-nian +2 位作者 FENG Wen-qiang DONG Ben-jing YANG Hus 《Journal of Energy and Power Engineering》 2007年第1期34-40,共7页
The concern on formation damage control of high permeability sandstone reservoir has been growing in oil industry in recent years. The invasion of particles and the filtrate of drilling fluid are proven as one of the ... The concern on formation damage control of high permeability sandstone reservoir has been growing in oil industry in recent years. The invasion of particles and the filtrate of drilling fluid are proven as one of the key factors accounting for reservoir damage. Based on the ideal packing theory, the practical software has been developed to optimize the blending proportion of several bridging agents, and the core flooding tests were conducted to evaluate return permeability of core samples contaminated with different drilling fluids. Experimental results show that the ideal packing approach can reduce the dynamic filtration rate, improve the return permeability and drawdown the breakthrough pressure, indicating that this kind of drilling fluids can meet the demands of formation damage control for high permeability sandstone reservoirs. Some applying procedures for formation damage control are also proposed in this paper. 展开更多
关键词 high permeability sandstone reservoirs formation damage control ideal packing return permeability
下载PDF
The effective pressure law for permeability of clay-rich sandstones 被引量:10
10
作者 Zhao Jinzhou Xiao Wenlian +3 位作者 Li Min Xiang Zuping Li Lijun Wang Jun 《Petroleum Science》 SCIE CAS CSCD 2011年第2期194-199,共6页
To study the relative sensitivity of permeability to pore pressure Pp and confining pressure Pc for clay-rich rocks, permeability measurements were performed on samples of four clay-rich sandstones. A new method (her... To study the relative sensitivity of permeability to pore pressure Pp and confining pressure Pc for clay-rich rocks, permeability measurements were performed on samples of four clay-rich sandstones. A new method (hereafter denoted the "slide method") was developed and used for analyzing the permeability data obtained. The effective pressure coefficients for permeability nk were calculated. The values of nk were found to be greater than 1.0 and insensitive to changes in pressure. These results confirmed observations previously made on clay-rich rocks. Also, the coefficients nk obtained had different characteristics for different samples because of differences in the types of clay they contained. The effective pressure law (σeff=Pc-nkPp) determined using the slide method gave better results about k(oefr) than classic Terzaghi's law (σeff=Pc-nkPp). 展开更多
关键词 permeability effective pressure coefficient slide method CLAY SANDSTONES
下载PDF
Mechanical property and permeability of raw coal containing methane under unloading confining pressure 被引量:10
11
作者 Yin Guangzhi Li Wenpu +4 位作者 Jiang Changbao Li Minghui Li Xing Liu Hairu Zhang Qiangui 《International Journal of Mining Science and Technology》 SCIE EI 2013年第6期789-793,共5页
Based on domestic-developed triaxial servo-controlled seepage equipment for thermal-hydrologicalmechanical coupling of coal containing methane,an experimental study was carried out to investigate mechanical property a... Based on domestic-developed triaxial servo-controlled seepage equipment for thermal-hydrologicalmechanical coupling of coal containing methane,an experimental study was carried out to investigate mechanical property and gas permeability of raw coal,under the situation of conventional triaxial compression and unloading confining pressure tests in different gas pressure conditions.Triaxial unloading confining pressure process was reducing confining pressure while increasing axial pressure.The research results show that,compared with the peak intensity of conventional triaxial loading,the ultimate strength of coal samples of triaxial unloading confining pressure was lower,deformation under loading was far less than unloading,dilation caused by unloading was more obvious than loading.The change trend of volumetric strain would embody change of gas permeability of coal,the permeability first reduced along with volumetric strain increase,and then raised with volume strain decrease,furthermore,the change trends of permeability of coal before and after destruction were different in the stage of decreasing volume strain due to the effect of gas pressure.When gas pressure was greater,the effective confining pressure was smaller,and the radial deformation produced by unloading was greater.When the unloading failed confining pressure difference was smaller,coal would be easier to get unstable failure. 展开更多
关键词 Mining engineering Unloading confining pressure Coal containing methane Mechanical property permeability
下载PDF
Influence of tectonic uplift-erosion on formation pressure 被引量:5
12
作者 Xu Hao Zhang Junfeng +2 位作者 Jia Chengzao Tang Dazhen Yin Wei 《Petroleum Science》 SCIE CAS CSCD 2010年第4期477-484,共8页
The formation of abnormally low-pressure hydrocarbon reservoirs in petroliferous basins has a close relationship with tectonic uplift and the consequent erosion. In order to understand abnormally low-pressure reservoi... The formation of abnormally low-pressure hydrocarbon reservoirs in petroliferous basins has a close relationship with tectonic uplift and the consequent erosion. In order to understand abnormally low-pressure reservoirs and to provide a scientific basis for exploration and development, we established, through numerical simulation and theoretical analysis, a set of equations for the formation pressure in a closed system influenced by uplift-erosion, discussed the relationship between the genesis of abnormal pressure and uplift-erosion, and put forward the concept of balance pressure (P b ). The results showed that abnormally high pressure coefficient may form when the current formation pressure was higher than P b , and abnormally low pressure may form when the current formation pressure was lower than P b . In the Santanghu Basin, the current formation pressure of abnormally low pressure reservoirs is lower than P b , so tectonic uplift-erosion leads to the decrease of the pressure coefficient. There is a positive correlation between the pressure drop caused by the decrease of fluid temperature and the rebound of rock porosity and strata erosion. Calculation results indicated that the reservoir pressure of Jurassic strata in the Santanghu Basin was decreased by 11.6-17.1 MPa due to tectonic uplift-erosion during the Late Yanshanian period. 展开更多
关键词 Uplift-erosion formation pressure temperature decrease porosity rebound abnormally low pressure Santanghu Basin
下载PDF
Characterization and prevention of formation damage for fractured carbonate reservoir formations with low permeability 被引量:3
13
作者 Shu Yong Yan Jienian 《Petroleum Science》 SCIE CAS CSCD 2008年第4期326-333,共8页
Stress sensitivity and water blocking in fractured carbonate reservoir formations with low permeability were determined as the main potential damage mechanisms during drilling and completion operations in the ancient ... Stress sensitivity and water blocking in fractured carbonate reservoir formations with low permeability were determined as the main potential damage mechanisms during drilling and completion operations in the ancient buried hill Ordovician reservoirs in the Tarim Basin. Geological structure, lithology, porosity, permeability and mineral components all affect the potential for formation damage. The experimental results showed that the permeability loss was 83.8%-98.6% caused by stress sensitivity, and was 27.9%-48.1% caused by water blocking. Based on the experimental results, several main conclusions concerning stress sensitivity can be drawn as follows: the lower the core permeability and the smaller the core fracture width, the higher the stress sensitivity. Also, stress sensitivity results in lag effect for both permeability recovery and fracture closure. Aimed at the mechanisms of formation damage, a modified low-damage mixed metal hydroxide (MMH) drilling fluid system was developed, which was mainly composed of low-fluorescence shale control agent, filtration control agent, lowfluorescence lubricant and surfactant. The results of experimental evaluation and field test showed that the newly-developed drilling fluid and engineering techniques provided could dramatically increase the return permeability (over 85%) of core samples. This drilling fluid had such advantages as good rheological and lubricating properties, high temperature stability, and low filtration rate (API filtration less than 5 ml after aging at 120 ℃ for 4 hours). Therefore, fractured carbonate formations with low permeability could be protected effectively when drilling with the newly-developed drilling fluid. Meanwhile, field test showed that both penetration rate and bore stability were improved and the soaking time of the drilling fluid with formation was sharply shortened, indicating that the modified MMH drilling fluid could meet the requirements of drilling engineering and geology. 展开更多
关键词 Fractured carbonate formations with low permeability stress sensitivity water blocking MMH drilling fluids formation damage control
下载PDF
Effect of persistent high intraocular pressure on microstructure and hydraulic permeability of trabecular meshwork 被引量:3
14
作者 梅曦 任琳 +2 位作者 许强 郑炜 刘志成 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第5期606-613,共8页
As the aqueous humor leaves the eye, it first passes through the trabecular meshwork (TM). Increased flow resistance in this region causes elevation of intraocular pressure (IOP), which leads to the occurrence of ... As the aqueous humor leaves the eye, it first passes through the trabecular meshwork (TM). Increased flow resistance in this region causes elevation of intraocular pressure (IOP), which leads to the occurrence of glaucoma. To quantitatively evaluate the effect of high IOP on the configuration and hydraulic permeability of the TM, second harmonic generation (SHG) microscopy was used to image the microstructures of the TM and adjacent tissues in control (normal) and high IOP conditions. Enucleated rabbit eyes were perfused at a pressure of 60 mmHg to achieve the high lOP. Through the anterior chamber of the eye, in situ images were obtained from different depths beneath the surface of the TM. Porosity and specific surface area of the TM in control and high IOP conditions were then calculated to estimate the effect of the high pressure on the permeability of tissue in different depths. We further photographed the histological sections of the TM and compared the in situ images. The following results were obtained in the control condition, where the region of depth was less than 55 μm with crossed branching beams and large pores in the superficial TM. The deeper meshwork is a silk-like tissue with abundant fluorescence separating the small size of pores. The total thickness of pathway tissues composed of TM and juxtacanalicular (JCT) is more than 100 p.m. After putting a high pressure on the inner wall of the eye, the TM region progressively collapses and decreases to be less than 40 μm. Fibers of the TM became dense, and the porosity at 34 μm in the high IOP condition is comparable to that at 105 μm in the control condition. As a consequent result, the permeability of the superficial TM decreases rapidly from 120 μm2 to 49.6 μm2 and that of deeper TM decreases from 1.66 μm2 to 0.57 μm2. Heterogeneity reflected by descent in permeability reduces from 12.4 μm of the control condition to 3.74 μm of the high IOP condition. The persistently high IOP makes the TM region collapse from its normal state, in which the collagen fibers of the TM are arranged in regular to maintain the physiological permeability of the outflow pathway. In the scope of pathologically high IOP, the microstructure of the TM is sensitive to pressure and hydraulic permeability can be significantly affected by IOP. 展开更多
关键词 trabecular meshwork hydraulic permeability intraocular pressure GLAUCOMA
下载PDF
Anisotropic Rock Poroelasticity Evolution in Ultra-low Permeability Sandstones under Pore Pressure,Confining Pressure,and Temperature:Experiments with Biot's Coefficient 被引量:3
15
作者 DU Shuheng 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2021年第3期937-945,共9页
This study aimed to show anisotropic poroelasticity evolution in ultra-low permeability reservoirs under pore pressure,confining pressure,and temperature.Several groups of experiments examining Biot's coefficient ... This study aimed to show anisotropic poroelasticity evolution in ultra-low permeability reservoirs under pore pressure,confining pressure,and temperature.Several groups of experiments examining Biot's coefficient under different conditions were carried out.Results showed that Biot's coefficient decreased with increased pore pressure,and the variation trend is linear,but the decreasing rate is variable between materials.Biot's coefficient increased with increased confining pressure;the variation trend is linear,but the increasing rate varies by material as well.Generally,Biot's coefficient remains stable with increased temperature.Lithology,clay mineral content,particle arrangement,and pore arrangement showed impacts on Biot's coefficient.For strong hydrophilic clay minerals,expansion in water could result in a strong surface adsorption reaction,which could result in an increased fluid bulk modulus and higher Biot's coefficient.For skeleton minerals with strong lipophilicity,such as quartz and feldspar,increased oil saturation will also result in an adsorption reaction,leading to increased fluid bulk modulus and a higher Biot's coefficient.The study's conclusions provide evidence of poroelasticity evolution of ultra-low permeability and help the enhancing oil recovery(EOR)process. 展开更多
关键词 Biot's coefficient ultra-low permeability pore pressure confining pressure temperature
下载PDF
Impact of capillary pressure on permeability impairment during CO2 injection into deep saline aquifers 被引量:2
16
作者 WANG Yuan LIU Yang 《Journal of Central South University》 SCIE EI CAS 2013年第8期2293-2298,共6页
During CO2 injection in deep saline aquifers, salt precipitation happens around the injection well because of capillary driven back flow, inducing permeability impairment. The permeability impairment affects CO2 injec... During CO2 injection in deep saline aquifers, salt precipitation happens around the injection well because of capillary driven back flow, inducing permeability impairment. The permeability impairment affects CO2 injectivity and migration. Different values of three characteristic parameters for capillary pressure function (air entry pressure, empirical parameter m and liquid residual saturation) as well as input absolute value of maximum capillary are chosen in numerical simulation to figure out their effects on salt precipitation. Verma & Pruess model is then used for quantifying permeability impairment. Results show that permeability decreases with higher air entry pressure, larger liquid residual saturation, and especially smaller value of empirical parameter m. To enhance CO2 injectivity and avoid blocking of CO2 migration, a homogenous formation with large pore size should be chosen before CO2 injection into deep saline aquifer. 展开更多
关键词 permeability impairment solid precipitation capillary pressure back flow characteristic parameters
下载PDF
Evolution of gas kick and overflow in wellbore and formation pressure inversion method under the condition of failure in well shut-in during a blowout 被引量:3
17
作者 Guo-Shuai Ju Tie Yan +2 位作者 Xiao-Feng Sun Jing-Yu Qu Qiao-Bo Hu 《Petroleum Science》 SCIE CAS CSCD 2022年第2期678-687,共10页
With ongoing development of oil exploration and techniques,there is a significant need for improved well control strategies and formation pressure prediction methods.In this paper,a gas-liquid transient drift flow mod... With ongoing development of oil exploration and techniques,there is a significant need for improved well control strategies and formation pressure prediction methods.In this paper,a gas-liquid transient drift flow model was established according to the gas-liquid two-phase flow characteristics during the gas kick.A Roe scheme was used for numerical calculation based on the finite volume method.The changes of bottom-hole pressure,casing pressure,the development law of cross-sectional gas holdup,and gas velocity,along with the vertical well depth,were analyzed through simulation examples.The time-series characteristics of mud pit gain were obtained by adjusting the formation parameter.The complex nonlinear mapping relationship between the formation parameters and the mud pit gain was established.The long short-term memory network(LSTM)of deep learning was used to obtain a formation pressure inversion when the blowout is out of control and the well cannot be shut-in.Experimental data from a well were used to verify the gas-liquid two-phase transient drift flow model based on the finite volume method,demonstrating that this method is reliable,with greatly improved prediction accuracy.This approach provides theoretical support for the early monitoring of gas kick during drilling,and for well-killing design and construction after uncontrolled blowout. 展开更多
关键词 Gas kick formation pressure Multiphase flow Computational model Long short-term memory
下载PDF
Study on Reducing Injection Pressure of Low Permeability Reservoirs Characterized by High Temperature and High Salinity 被引量:4
18
作者 Zhao Lin Qin Bing +2 位作者 Wu Xiongjun Wang Zenglin Jiang Jianlin 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2021年第2期44-54,共11页
In view of the problems of high injection pressure and low water injection rate in water injection wells of low permeability reservoirs featuring high temperature and high salinity,two new surfactants were synthesized... In view of the problems of high injection pressure and low water injection rate in water injection wells of low permeability reservoirs featuring high temperature and high salinity,two new surfactants were synthesized,including a quaternary ammonium surfactant and a betaine amphoteric surfactant.The composite surfactant system BYJ-1 was formed by mixing two kinds of surfactants.The minimum interfacial tension between BYJ-1 solution and the crude oil could reach 1.4×10^(-3) mN/m.The temperature resistance was up to 140℃,and the salt resistance could reach up to 120 g/L.For the low permeability core fully saturated with water phase,BYJ-1 could obviously reduce the starting pressure gradient of low permeability core.While for the core with residual oil,BYJ-1 could obviously reduce the injection pressure and improve the oil recovery.Moreover,the field test showed that BYJ-1 could effectively reduce the injection pressure of the water injection well,increase the injection volume,and increase the liquid production and oil production of the corresponding production well. 展开更多
关键词 low permeability reservoir quaternary ammonium salt betaine surfactant interfacial tension reducing injection pressure enhancing oil recovery
下载PDF
Experimental and Numerical Assessment of the Influence of Bottomhole Pressure Drawdown on Terrigenous Reservoir Permeability and Well Productivity 被引量:1
19
作者 Sergey Popov Sergey Chernyshov Evgeniy Gladkikh 《Fluid Dynamics & Materials Processing》 EI 2023年第3期619-634,共16页
During oil and gas fields development,a decrease in reservoir and bottomhole pressure has often a detrimental effect on reservoir properties,especially permeability.This study presents the results of laboratory tests ... During oil and gas fields development,a decrease in reservoir and bottomhole pressure has often a detrimental effect on reservoir properties,especially permeability.This study presents the results of laboratory tests conducted to determine the response of terrigenous reservoir core-sample permeability to changes in the effective stresses and a decrease in the reservoir pressure.The considered samples were exposed for a long time to a constant high effective stress for a more reliable assessment of the viscoplastic deformations.According to these experiments,the decrease of the core samples permeability may reach 21%with a decrease in pressure by 9.5 MPa from the initial reservoir conditions.Numerical simulations have been also conducted.These have been based on the finite element modeling of the near-wellbore zone of the terrigenous reservoir using poroelasticity relations.The simulation results show a limited decrease in reservoir permeability in the near-wellbore zone(by 17%,which can lead to a decrease in the well productivity by 13%). 展开更多
关键词 Terrigenous reservoir permeability core sample reservoir pressure bottomhole pressure drawdown effective stress well productivity
下载PDF
Evolution features of in-situ permeability of low-maturity shale with the increasing temperature,Cretaceous Nenjiang Formation,northern Songliao Basin,NE China 被引量:1
20
作者 HE Wenyuan MENG Qi'an +6 位作者 LIN Tiefeng WANG Rui LIU Xin MA Shengming LI Xin YANG Fan SUN Guoxin 《Petroleum Exploration and Development》 CSCD 2022年第3期516-529,共14页
Temperature-triaxial pressure permeability testing at the axial pressure of 8 MPa and confining pressure of 10 MPa,closed shale system pyrolysis experiment by electrical heating and scanning electron microscopy analys... Temperature-triaxial pressure permeability testing at the axial pressure of 8 MPa and confining pressure of 10 MPa,closed shale system pyrolysis experiment by electrical heating and scanning electron microscopy analysis are used to study the evolution mechanism of in-situ permeability in the direction parallel to bedding of low-maturity shale from Member 2(K_(2)n_(2))of Cretaceous Nenjiang Formation in northern Songliao Basin with mainly Type I kerogen under the effect of temperature.With the increasing temperature,the in-situ permeability presents a peak-valley-peak tendency.The lowest value of in-situ permeability occurs at 375℃.Under the same temperature,the in-situ permeability decreases with the increase of pore pressure.The in-situ permeability evolution of low-maturity shale can be divided into 5 stages:(1)From 25℃to 300℃,thermal cracking and dehydration of clay minerals improve the permeability.However,the value of permeability is less than 0.01×10^(-3)μm^(2).(2)From 300℃to 350℃,organic matter pyrolysis and hydrocarbon expulsion result in mineral intergranular pores and micron pore-fractures,these pores and fractures form an interconnected pore network at limited scale,improving the permeability.But the liquid hydrocarbon,with high content of viscous asphaltene,is more difficult to move under stress and more likely to retain in pores,causing slow rise of the permeability.(3)From 350℃to 375℃,pores are formed by organic matter pyrolysis,but the adsorption swelling of liquid hydrocarbon and additional expansion thermal stress constrained by surrounding stress compress the pore-fracture space,making liquid hydrocarbon difficult to expel and permeability reduce rapidly.(4)From 375℃to 450℃,the interconnected pore network between different mineral particles after organic matter conversion,enlarged pores and transformation of clay minerals promote the permeability to increase constantly even under stress constraints.(5)From 450℃to 500℃,the stable pore system and crossed fracture system in different bedding directions significantly enhance the permeability.The organic matter pyrolysis,pore-fracture structure and surrounding stress in the different stages are the key factors affecting the evolution of in-situ permeability. 展开更多
关键词 Songliao Basin Cretaceous Nenjiang formation low-maturity shale in-situ conversion pore-fracture structure in-situ permeability shale oil
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部