This study employed a modified biochar material to construct a permeable reactive barrier(PRB)for the treatment of water bodies polluted with mercury and arsenic.The experimental results demonstrated that the addition...This study employed a modified biochar material to construct a permeable reactive barrier(PRB)for the treatment of water bodies polluted with mercury and arsenic.The experimental results demonstrated that the addition of goethite-modified biochar significantly enhanced the remediation efficiency of As(III),achieving a maximum removal rate of 100%.Conversely,pure biochar exhibited high efficiency in the removal of Hg(II),with a maximum removal rate approaching 100%.Furthermore,the pH level of the water significantly influenced the adsorption efficiency of heavy metal ions,with the optimal removal performance observed at a pH of 6.0.The PRB system demonstrated excellent removal rates under low concentrations of heavy metals.However,as the concentration increased,the remediation efficiency exhibited a slight decrease.In summary,the findings of this study provide compelling evidence for the use of modified biochar in the construction of PRBs for the remediation of mercury and arsenic-polluted water bodies.Furthermore,the study reveals the mechanism by which pH and heavy metal concentration influence remediation efficiency.展开更多
Metal and acid ions contamination of soil in China is serious. To find an efficient solution for remediating the combined pollution,electrokinetics( EK) coupled with chitosan( CTS)permeable reactive barrier( EK/CPRB) ...Metal and acid ions contamination of soil in China is serious. To find an efficient solution for remediating the combined pollution,electrokinetics( EK) coupled with chitosan( CTS)permeable reactive barrier( EK/CPRB) was used to investigate the performances of metal and acid ions remediation. Adsorption characteristics of Zn^(2+),Fe^(3+),Ca^(2+),SO_4^(2-) and NO_3^- onto CTS were also conducted. The results showed the sorption of Zn^(2+),Fe^(3+),Ca^(2+),SO_4^(2-) and NO_3^- on CTS could be well described by Freundlich model. When the CTS dosage is 8 g,the total removal efficiency for Zn^(2+),Fe^(3+),Ca^(2+),SO_4^(2-) and NO_3^- is 86. 8%,90. 2%,92. 4%,90. 0% and 82. 5%,respectively. CTS enhanced ions remediation efficiencies significantly compared with the single EK system,especially for SO_4^(2-) and NO_3^-. The results indicate EK/CPRB system is suitable for the remediation of soil contaminated by both metal ions and acid ions.展开更多
This work reports on applying iron oxide coated sand (IOCS) media in an experimental permeable reactive barrier to remove uranium (U) species from uranium containing water. A field study was conducted at the legacy Gu...This work reports on applying iron oxide coated sand (IOCS) media in an experimental permeable reactive barrier to remove uranium (U) species from uranium containing water. A field study was conducted at the legacy Gunnar uranium mine & mill site that was abandoned in the 1960s with limited to no decommissioning. The flooded Gunnar mine pit presently contains about 3.2 million m<sup>3</sup> of water contaminated by dissolved U (1.2 mg/L), Ra-226 (0.4 Bq/L), and minor concentrations of other contaminants (As, Se, etc.). The water is seeping over the pit rim into Lake Athabasca, posing potential environmental and health concerns. IOCS media can be used to immobilize uranium species through an adsorption process. Herein, the preparation of hydrous ferric oxide sorbents and their supported forms onto silica sands is described. Fourier transform infrared spectroscopy (FTIR) and powder X-ray diffraction (pXRD) were used for structural characterization. The adsorption properties of the IOCS sorbent media were modeled by the Langmuir adsorption isotherm, where a maximum uranium uptake capacity was estimated. Bench-scale adsorption kinetic experiments were also performed before moving to a field trial. Based on these lab results and input on field-scale parameters, a pilot permeable reactive barrier was fabricated and a field test conducted near the Gunnar pit in June 2019. This pilot test provided technical data and information needed for designing a full-scale permeable barrier that employs the IOCS media. This approach can be applied for in-situ water treatment at Gunnar and other legacy uranium sites.展开更多
Background Vascular hyporeactivity and leakage are key pathophysiologic features that produce multi-organ damage upon sepsis.We hypothesized that pericytes,a group of pluripotent cells that maintain vascular integrity...Background Vascular hyporeactivity and leakage are key pathophysiologic features that produce multi-organ damage upon sepsis.We hypothesized that pericytes,a group of pluripotent cells that maintain vascular integrity and tension,are protective against sepsis via regulating vascular reactivity and permeability.Methods We conducted a series of in vivo experiments using wild-type(WT),platelet-derived growth factor receptor-β(PDGFR-β)-Cre+mT/mG transgenic mice and Tie2-Cre+Cx43^(flox/flox)mice to examine the relative contribution of pericytes in sepsis,either induced by cecal ligation and puncture(CLP)or lipopolysaccharide(LPS)challenge.In a separate set of experiments with Sprague-Dawley(SD)rats,pericytes were depleted using CP-673451,a selective PDGFR-βinhibitor,at a dosage of 40 mg/(kg·d)for 7 consecutive days.Cultured pericytes,vascular endothelial cells(VECs)and vascular smooth muscle cells(VSMCs)were used for mechanistic investigations.The effects of pericytes and pericyte-derived microvesicles(PCMVs)and candidate miRNAs on vascular reactivity and barrier function were also examined.Results CLP and LPS induced severe injury/loss of pericytes,vascular hyporeactivity and leakage(P<0.05).Transplantation with exogenous pericytes protected vascular reactivity and barrier function via microvessel colonization(P<0.05).Cx43 knockout in either pericytes or VECs reduced pericyte colonization in microvessels(P<0.05).Additionally,PCMVs transferred miR-145 and miR-132 to VSMCs and VECs,respectively,exerting a protective effect on vascular reactivity and barrier function after sepsis(P<0.05).miR-145 primarily improved the contractile response of VSMCs by activating the sphingosine kinase 2(Sphk2)/sphingosine-1-phosphate receptor(S1PR)1/phosphorylation of myosin light chain 20 pathway,whereas miR-132 effectively improved the barrier function of VECs by activating the Sphk2/S1PR2/zonula occludens-1 and vascular endothelial-cadherin pathways.Conclusions Pericytes are protective against sepsis through regulating vascular reactivity and barrier function.Possible mechanisms include both direct colonization of microvasculature and secretion of PCMVs.展开更多
Reperfusion therapy must be applied as soon as possible to attenuate the ischemic insult of acute myocardial infarction(AMI).However reperfusion is responsible for additional myocardial damage,which likely involves op...Reperfusion therapy must be applied as soon as possible to attenuate the ischemic insult of acute myocardial infarction(AMI).However reperfusion is responsible for additional myocardial damage,which likely involves opening of the mitochondrial permeability transition pore(mPTP).In reperfusion injury,mitochondrial damage is a determining factor in causing loss of cardiomyocyte function and viability.Major mechanisms of mitochondrial dysfunction include the long lasting opening of mPTPs and the oxidative stress resulting from formation of reactive oxygen species(ROS).Several signaling cardioprotective pathways are activated by stimuli such as preconditioning and postconditioning,obtained with brief intermittent ischemia or with pharmacological agents.These pathways converge on a common target,the mitochondria,to preserve their function after ischemia/reperfusion.The present review discusses the role of mitochondria in cardioprotection,especially the involvement of adenosine triphosphate-dependent potassium channels,ROS signaling,and the mPTP.Ischemic postconditioning has emerged as a new way to target the mitochondria,and to drastically reduce lethal reperfusion injury.Several clinical studies using ischemic postconditioning during angioplasty now support its protective effects,and an interesting alternative is pharmacological postconditioning.In fact ischemic postconditioning and the mPTP desensitizer,cyclosporine A,have been shown to induce comparable protection in AMI patients.展开更多
Permeable reactive barriers(PRBs)are used for groundwater remediation at contaminated sites worldwide.This technology has been efficient at appropriate sites for treating organic and inorganic contaminants using zero-...Permeable reactive barriers(PRBs)are used for groundwater remediation at contaminated sites worldwide.This technology has been efficient at appropriate sites for treating organic and inorganic contaminants using zero-valent iron(ZVI)as a reductant and as a reactive material.Continued development of the technology over the years suggests that a robust understanding of PRB performance and the mechanisms involved is still lacking.Conflicting information in the scientific literature downplays the critical role of ZVI corrosion in the remediation of various organic and inorganic pollutants.Additionally,there is a lack of information on how different mechanisms act in tandem to affect ZVI-groundwater systems through time.In this review paper,we describe the underlying mechanisms of PRB performance and remove isolated misconceptions.We discuss the primary mechanisms of ZVI transformation and aging in PRBs and the role of iron corrosion products.We review numerous sites to reinforce our understanding of the interactions between groundwater contaminants and ZVI and the authigenic minerals that form within PRBs.Our findings show that ZVI corrosion products and mineral precipitates play critical roles in the long-term performance of PRBs by influencing the reactivity of ZVI.Pore occlusion by mineral precipitates occurs at the influent side of PRBs and is enhanced by dissolved oxygen and groundwater rich in dissolved solids and high alkalinity,which negatively impacts hydraulic conductivity,allowing contaminants to potentially bypass the treatment zone.Further development of site characterization tools and models is needed to support effective PRB designs for groundwater remediation.展开更多
文摘This study employed a modified biochar material to construct a permeable reactive barrier(PRB)for the treatment of water bodies polluted with mercury and arsenic.The experimental results demonstrated that the addition of goethite-modified biochar significantly enhanced the remediation efficiency of As(III),achieving a maximum removal rate of 100%.Conversely,pure biochar exhibited high efficiency in the removal of Hg(II),with a maximum removal rate approaching 100%.Furthermore,the pH level of the water significantly influenced the adsorption efficiency of heavy metal ions,with the optimal removal performance observed at a pH of 6.0.The PRB system demonstrated excellent removal rates under low concentrations of heavy metals.However,as the concentration increased,the remediation efficiency exhibited a slight decrease.In summary,the findings of this study provide compelling evidence for the use of modified biochar in the construction of PRBs for the remediation of mercury and arsenic-polluted water bodies.Furthermore,the study reveals the mechanism by which pH and heavy metal concentration influence remediation efficiency.
基金National Natural Science Foundations of China(Nos.21477018,21007010)the Fundamental Research Funds for the Central Universities,China(No.15D111323)+1 种基金Hunan Province Ministry of Transportation Scientific Research Projects,China(Nos.200908,201105)Ministry of Transport Science and Technology Program,China(No.2010353343290)
文摘Metal and acid ions contamination of soil in China is serious. To find an efficient solution for remediating the combined pollution,electrokinetics( EK) coupled with chitosan( CTS)permeable reactive barrier( EK/CPRB) was used to investigate the performances of metal and acid ions remediation. Adsorption characteristics of Zn^(2+),Fe^(3+),Ca^(2+),SO_4^(2-) and NO_3^- onto CTS were also conducted. The results showed the sorption of Zn^(2+),Fe^(3+),Ca^(2+),SO_4^(2-) and NO_3^- on CTS could be well described by Freundlich model. When the CTS dosage is 8 g,the total removal efficiency for Zn^(2+),Fe^(3+),Ca^(2+),SO_4^(2-) and NO_3^- is 86. 8%,90. 2%,92. 4%,90. 0% and 82. 5%,respectively. CTS enhanced ions remediation efficiencies significantly compared with the single EK system,especially for SO_4^(2-) and NO_3^-. The results indicate EK/CPRB system is suitable for the remediation of soil contaminated by both metal ions and acid ions.
文摘This work reports on applying iron oxide coated sand (IOCS) media in an experimental permeable reactive barrier to remove uranium (U) species from uranium containing water. A field study was conducted at the legacy Gunnar uranium mine & mill site that was abandoned in the 1960s with limited to no decommissioning. The flooded Gunnar mine pit presently contains about 3.2 million m<sup>3</sup> of water contaminated by dissolved U (1.2 mg/L), Ra-226 (0.4 Bq/L), and minor concentrations of other contaminants (As, Se, etc.). The water is seeping over the pit rim into Lake Athabasca, posing potential environmental and health concerns. IOCS media can be used to immobilize uranium species through an adsorption process. Herein, the preparation of hydrous ferric oxide sorbents and their supported forms onto silica sands is described. Fourier transform infrared spectroscopy (FTIR) and powder X-ray diffraction (pXRD) were used for structural characterization. The adsorption properties of the IOCS sorbent media were modeled by the Langmuir adsorption isotherm, where a maximum uranium uptake capacity was estimated. Bench-scale adsorption kinetic experiments were also performed before moving to a field trial. Based on these lab results and input on field-scale parameters, a pilot permeable reactive barrier was fabricated and a field test conducted near the Gunnar pit in June 2019. This pilot test provided technical data and information needed for designing a full-scale permeable barrier that employs the IOCS media. This approach can be applied for in-situ water treatment at Gunnar and other legacy uranium sites.
基金supported by the Key Projects and Innovation Group of National Natural Science Foundation of China(81830065),the Innovation Groups of NSFC(81721001),and the Young Scientists Fund(82102279).
文摘Background Vascular hyporeactivity and leakage are key pathophysiologic features that produce multi-organ damage upon sepsis.We hypothesized that pericytes,a group of pluripotent cells that maintain vascular integrity and tension,are protective against sepsis via regulating vascular reactivity and permeability.Methods We conducted a series of in vivo experiments using wild-type(WT),platelet-derived growth factor receptor-β(PDGFR-β)-Cre+mT/mG transgenic mice and Tie2-Cre+Cx43^(flox/flox)mice to examine the relative contribution of pericytes in sepsis,either induced by cecal ligation and puncture(CLP)or lipopolysaccharide(LPS)challenge.In a separate set of experiments with Sprague-Dawley(SD)rats,pericytes were depleted using CP-673451,a selective PDGFR-βinhibitor,at a dosage of 40 mg/(kg·d)for 7 consecutive days.Cultured pericytes,vascular endothelial cells(VECs)and vascular smooth muscle cells(VSMCs)were used for mechanistic investigations.The effects of pericytes and pericyte-derived microvesicles(PCMVs)and candidate miRNAs on vascular reactivity and barrier function were also examined.Results CLP and LPS induced severe injury/loss of pericytes,vascular hyporeactivity and leakage(P<0.05).Transplantation with exogenous pericytes protected vascular reactivity and barrier function via microvessel colonization(P<0.05).Cx43 knockout in either pericytes or VECs reduced pericyte colonization in microvessels(P<0.05).Additionally,PCMVs transferred miR-145 and miR-132 to VSMCs and VECs,respectively,exerting a protective effect on vascular reactivity and barrier function after sepsis(P<0.05).miR-145 primarily improved the contractile response of VSMCs by activating the sphingosine kinase 2(Sphk2)/sphingosine-1-phosphate receptor(S1PR)1/phosphorylation of myosin light chain 20 pathway,whereas miR-132 effectively improved the barrier function of VECs by activating the Sphk2/S1PR2/zonula occludens-1 and vascular endothelial-cadherin pathways.Conclusions Pericytes are protective against sepsis through regulating vascular reactivity and barrier function.Possible mechanisms include both direct colonization of microvasculature and secretion of PCMVs.
基金Supported by National Institutes of Cardiovascular ResearchRegione Piemonte,PRIN,ex-60% and Compagnia di San Paolo,Italy
文摘Reperfusion therapy must be applied as soon as possible to attenuate the ischemic insult of acute myocardial infarction(AMI).However reperfusion is responsible for additional myocardial damage,which likely involves opening of the mitochondrial permeability transition pore(mPTP).In reperfusion injury,mitochondrial damage is a determining factor in causing loss of cardiomyocyte function and viability.Major mechanisms of mitochondrial dysfunction include the long lasting opening of mPTPs and the oxidative stress resulting from formation of reactive oxygen species(ROS).Several signaling cardioprotective pathways are activated by stimuli such as preconditioning and postconditioning,obtained with brief intermittent ischemia or with pharmacological agents.These pathways converge on a common target,the mitochondria,to preserve their function after ischemia/reperfusion.The present review discusses the role of mitochondria in cardioprotection,especially the involvement of adenosine triphosphate-dependent potassium channels,ROS signaling,and the mPTP.Ischemic postconditioning has emerged as a new way to target the mitochondria,and to drastically reduce lethal reperfusion injury.Several clinical studies using ischemic postconditioning during angioplasty now support its protective effects,and an interesting alternative is pharmacological postconditioning.In fact ischemic postconditioning and the mPTP desensitizer,cyclosporine A,have been shown to induce comparable protection in AMI patients.
文摘Permeable reactive barriers(PRBs)are used for groundwater remediation at contaminated sites worldwide.This technology has been efficient at appropriate sites for treating organic and inorganic contaminants using zero-valent iron(ZVI)as a reductant and as a reactive material.Continued development of the technology over the years suggests that a robust understanding of PRB performance and the mechanisms involved is still lacking.Conflicting information in the scientific literature downplays the critical role of ZVI corrosion in the remediation of various organic and inorganic pollutants.Additionally,there is a lack of information on how different mechanisms act in tandem to affect ZVI-groundwater systems through time.In this review paper,we describe the underlying mechanisms of PRB performance and remove isolated misconceptions.We discuss the primary mechanisms of ZVI transformation and aging in PRBs and the role of iron corrosion products.We review numerous sites to reinforce our understanding of the interactions between groundwater contaminants and ZVI and the authigenic minerals that form within PRBs.Our findings show that ZVI corrosion products and mineral precipitates play critical roles in the long-term performance of PRBs by influencing the reactivity of ZVI.Pore occlusion by mineral precipitates occurs at the influent side of PRBs and is enhanced by dissolved oxygen and groundwater rich in dissolved solids and high alkalinity,which negatively impacts hydraulic conductivity,allowing contaminants to potentially bypass the treatment zone.Further development of site characterization tools and models is needed to support effective PRB designs for groundwater remediation.
基金Project(2019YFC1803500)supported by the National Key R&D Program of ChinaProject(20223040)supported by the Nanning Key R&D Program Projects,ChinaProject(YCBZ2022008)supported by the Innovation Project of Guangxi Graduate Education,China。