期刊文献+
共找到223篇文章
< 1 2 12 >
每页显示 20 50 100
基于ICEEMDAN-MPE和GWO-SVM的滚动轴承故障诊断方法
1
作者 许浩飞 潘存治 《国防交通工程与技术》 2024年第1期33-37,96,共6页
针对滚动轴承故障状态难以准确且快速的识别,提出了一种基于改进自适应噪声完备集成经验模态分解(Improved Complementary Ensemble Empirical Mode Decomposition with Adaptive Noise,ICEEMDAN)-多尺度排列熵(Multi-Scale Permutation... 针对滚动轴承故障状态难以准确且快速的识别,提出了一种基于改进自适应噪声完备集成经验模态分解(Improved Complementary Ensemble Empirical Mode Decomposition with Adaptive Noise,ICEEMDAN)-多尺度排列熵(Multi-Scale Permutation Entropy,MPE)和灰狼算法优化支持向量机(Grey Wolf Optimization Algorithm-Support Vector Machine,GWO-SVM)结合的故障诊断方法。首先将轴承信号进行ICEEMDAN分解,然后选取其中相关性较大的IMF(Intrinsic Mode Function)分量计算多尺度排列熵构成特征集合,最后通过GWO-SVM算法进行故障状态识别。通过滚动轴承数据集和不同算法的对比实验,验证了ICEEMDAN-MPE-GWO-SVM方法的有效性,表明该方法可以准确且快速的诊断滚动轴承的故障情况。 展开更多
关键词 滚动轴承 改进自适应噪声完备集成经验模态分解(ICEEMDAN) 多尺度排列熵(Mpe) 支持向量机(svm) 灰狼算法(GWO) 故障诊断
下载PDF
Adaptive Bearing Fault Diagnosis based on Wavelet Packet Decomposition and LMD Permutation Entropy 被引量:1
2
作者 WANG Ming-yue MIAO Bing-rong YUAN Cheng-biao 《International Journal of Plant Engineering and Management》 2016年第4期202-216,共15页
Bearing fault signal is nonlinear and non-stationary, therefore proposed a fault feature extraction method based on wavelet packet decomposition (WPD) and local mean decomposition (LMD) permutation entropy, which ... Bearing fault signal is nonlinear and non-stationary, therefore proposed a fault feature extraction method based on wavelet packet decomposition (WPD) and local mean decomposition (LMD) permutation entropy, which is based on the support vector machine (SVM) as the feature vector pattern recognition device Firstly, the wavelet packet analysis method is used to denoise the original vibration signal, and the frequency band division and signal reconstruction are carried out according to the characteristic frequency. Then the decomposition of the reconstructed signal is decomposed into a number of product functions (PE) by the local mean decomposition (LMD) , and the permutation entropy of the PF component which contains the main fault information is calculated to realize the feature quantization of the PF component. Finally, the entropy feature vector input multi-classification SVM, which is used to determine the type of fault and fault degree of bearing The experimental results show that the recognition rate of rolling bearing fault diagnosis is 95%. Comparing with other methods, the present this method can effectively extract the features of bearing fault and has a higher recognition accuracy 展开更多
关键词 fault diagnosis wavelet packet decomposition WPD local mean decomposition LMD permutation entropy support vector machine (svm
下载PDF
基于InMPE和MFO-SVM的变负载滚动轴承故障诊断 被引量:2
3
作者 袁建明 刘宇 +1 位作者 胡志辉 王磊 《机电工程》 CAS 北大核心 2023年第8期1185-1193,共9页
由于在变负载工况下,提取滚动轴承故障特征较为困难,且其故障识别准确率也较低,为此,提出了一种基于插值多尺度排列熵(InMPE)和飞蛾火焰优化支持向量机(MFO-SVM)的滚动轴承故障诊断方法。首先,在粗粒化时采用三次样条插值代替传统多尺... 由于在变负载工况下,提取滚动轴承故障特征较为困难,且其故障识别准确率也较低,为此,提出了一种基于插值多尺度排列熵(InMPE)和飞蛾火焰优化支持向量机(MFO-SVM)的滚动轴承故障诊断方法。首先,在粗粒化时采用三次样条插值代替传统多尺度排列熵(MPE)中的线性插值,设计了InMPE算法,利用美国凯斯西储大学(CWRU)轴承数据集,分析了不同序列长度、嵌入维数和负载对InMPE的影响;然后,使用飞蛾火焰算法(MFO)优化了支持向量机(SVM),构建了基于InMPE和MFO-SVM的故障诊断模型;最后,搭建了轴承故障诊断试验台,制作了变负载工况下滚动轴承故障特征样本集,对基于InMPE与MFO-SVM的故障诊断方法的有效性和先进性进行了验证。研究结果表明:在变负载工况下,采用基于InMPE与MFO-SVM方法所得的故障识别准确率达到了98.5%,而采用传统MPE方法所得的故障识别准确率为95.9%;在噪声背景下,采用基于InMPE与MFO-SVM方法所得的识别准确率为92.4%,优于后者的80.0%准确率;证明基于InMPE与MFO-SVM的方法能有效识别出滚动轴承的故障信息,且对噪声具有较好的鲁棒性。 展开更多
关键词 滚动轴承 故障诊断 变负载工况 多尺度排列熵 插值多尺度排列熵 飞蛾火焰算法 支持向量机
下载PDF
基于ICEEMDAN和IMWPE-LDA-BOA-SVM的齿轮箱损伤识别模型 被引量:2
4
作者 王洪 张锐丽 吴凯 《机电工程》 CAS 北大核心 2023年第11期1709-1717,共9页
针对齿轮箱振动信号中的背景噪声过大影响故障特征质量,进而降低故障识别准确率的问题,提出了一种基于改进自适应噪声完备集成经验模态分解(ICEEMDAN)、改进多尺度加权排列熵(IMWPE)、利用线性判别分析(LDA)、蝴蝶优化算法(BOA)优化支... 针对齿轮箱振动信号中的背景噪声过大影响故障特征质量,进而降低故障识别准确率的问题,提出了一种基于改进自适应噪声完备集成经验模态分解(ICEEMDAN)、改进多尺度加权排列熵(IMWPE)、利用线性判别分析(LDA)、蝴蝶优化算法(BOA)优化支持向量机(SVM)的齿轮箱故障诊断方法(ICEEMDAN-IMWPE-LDA-BOA-SVM)。首先,采用ICEEMDAN对齿轮箱振动信号进行了分解,生成了一系列从低频到高频分布的本征模态函数分量;接着,基于相关系数筛选出包含主要故障信息的本征模态函数分量,进行了信号重构,降低了信号的噪声;随后,提出了改进多尺度加权排列熵的非线性动力学指标,并利用其提取了重构信号的故障特征,以构建反映齿轮箱故障特性的故障特征;然后,利用线性判别分析(LDA)对原始故障特征进行了压缩,以构建低维的故障特征向量;最后,采用蝴蝶优化算法(BOA)对支持向量机(SVM)的惩罚系数和核函数参数进行了优化,以构建参数最优的故障分类器,对齿轮箱的故障进行了识别;基于齿轮箱复合故障数据集对ICEEMDAN-IMWPE-BOA-SVM方法进行了实验和对比分析。研究结果表明:该方法能够较为准确地识别齿轮箱的不同故障类型,准确率达到了99.33%,诊断时间只需5.31 s,在多个方面都优于其他对比方法,在齿轮箱的故障诊断中更具有应用潜力。 展开更多
关键词 故障特征提取 信号分解及信号重构 特征降维 改进自适应噪声完备集成经验模态分解 改进多尺度加权排列熵 线性判别分析 蝴蝶优化算法 支持向量机
下载PDF
IMRPE和AO-SVM在往复压缩机故障识别中的应用 被引量:1
5
作者 李占锋 张军昌 《机电工程》 CAS 北大核心 2023年第12期1983-1990,共8页
针对常规故障诊断方法不适用于提取往复压缩机声音信号的故障特征,导致往复压缩机的故障识别精度不高的问题,提出了基于改进多尺度反向排列熵(IMRPE)、t-分布邻域嵌入(t-SNE)和天鹰优化器(AO)优化支持向量机(SVM)的往复压缩机故障诊断... 针对常规故障诊断方法不适用于提取往复压缩机声音信号的故障特征,导致往复压缩机的故障识别精度不高的问题,提出了基于改进多尺度反向排列熵(IMRPE)、t-分布邻域嵌入(t-SNE)和天鹰优化器(AO)优化支持向量机(SVM)的往复压缩机故障诊断方法。首先,采用具有优异特征表达性能的IMRPE方法来提取往复压缩机声音信号的故障信息,构建了反映样本故障特征属性的故障特征向量;然后,利用t-SNE方法对故障特征进行了特征降维处理,以降低故障特征维数和去除冗余特征,从而获得了低维的敏感特征;最后,利用AO方法对SVM的惩罚系数和核参数进行了自适应搜索,从而建立了结构参数最优的分类器,并将低维的敏感故障特征输入至AO-SVM分类器中,进行了训练和分类,依据测试样本的输出标签完成了样本的故障识别;以往复压缩机声音信号故障数据为对象开展了研究,并评估了IMRPE-t-SNE-AO-SVM方法的有效性和稳定性。研究结果表明:IMRPE-t-SNE-AO-SVM方法的故障识别精度达到了97%,不仅能够用于准确且稳定地识别往复压缩机的故障类型,提高故障识别的精度,而且在准确率和稳定性方面优于其它对比方法。 展开更多
关键词 压缩机 故障诊断 改进多尺度反向排列熵 t-分布邻域嵌入 天鹰优化器优化支持向量机
下载PDF
RCMNAAPE在旋转机械故障诊断中的应用
6
作者 储祥冬 戴礼军 +3 位作者 涂金洲 罗震寰 于震 秦磊 《机电工程》 CAS 北大核心 2024年第6期1039-1049,共11页
针对精细复合多尺度排列熵(RCMPE)无法充分提取旋转机械振动信号中的故障信息,从而导致旋转机械故障识别准确率不稳定这一缺陷,提出了一种基于精细复合多尺度归一化幅值感知排列熵(RCMNAAPE)、拉普拉斯分数(LS)和灰狼算法优化支持向量机... 针对精细复合多尺度排列熵(RCMPE)无法充分提取旋转机械振动信号中的故障信息,从而导致旋转机械故障识别准确率不稳定这一缺陷,提出了一种基于精细复合多尺度归一化幅值感知排列熵(RCMNAAPE)、拉普拉斯分数(LS)和灰狼算法优化支持向量机(GWO-SVM)的旋转机械故障诊断方法。首先,利用幅值感知排列熵替换了RCMPE中的排列熵,提出了RCMNAAPE,并将其用于提取旋转机械振动信号的故障特征生成特征样本;随后,采用了LS从原始的高维故障特征向量中筛选出较少的能够更准确描述故障状态的特征,构造敏感特征样本;最后,将低维的故障特征向量输入由灰狼算法优化的支持向量机中进行了训练和测试,完成了旋转机械样本的故障识别和分类,利用滚动轴承和齿轮箱故障数据集将RCMNAAPE-LS-GWO-SVM与其他故障诊断方法进行了对比分析,并开展了评估。研究结果表明:基于RCMNAAPE-LS-GWO-SVM的故障诊断方法能够有效识别旋转机械的各类故障,其识别准确率高于其他对比的故障诊断方法,其中滚动轴承故障的识别准确率达到99.33%,齿轮箱故障的识别准确率达到98.67%。虽然,该方法的特征提取效率不佳,平均特征提取时间分别为153.02 s和163.98 s,仅优于精细复合多尺度模糊熵(RCMFE),但其综合性能更加优异。 展开更多
关键词 故障识别准确率 滚动轴承 齿轮箱 精细复合多尺度归一化幅值感知排列熵 拉普拉斯分数 灰狼优化支持向量机
下载PDF
EHDE和WHO-SVM模型在齿轮箱故障诊断中的应用
7
作者 马晓娜 周海超 《机电工程》 CAS 北大核心 2024年第4期622-632,共11页
针对现有齿轮箱故障诊断方法对数据长度敏感的缺陷,提出了一种基于增强层次多样性熵(EHDE)和野马算法(WHO)优化支持向量机(SVM)的齿轮箱故障诊断模型。首先,传统熵值特征提取方法在特征提取阶段对数据样本的长度比较敏感,为此提出了增... 针对现有齿轮箱故障诊断方法对数据长度敏感的缺陷,提出了一种基于增强层次多样性熵(EHDE)和野马算法(WHO)优化支持向量机(SVM)的齿轮箱故障诊断模型。首先,传统熵值特征提取方法在特征提取阶段对数据样本的长度比较敏感,为此提出了增强层次多样性熵,并将其作为特征提取指标用于提取齿轮箱的故障特征;其次,采用WHO算法对SVM模型的参数进行了优化,建立了参数最优的WHO-SVM分类器;最后,将故障特征样本输入至WHO-SVM分类器中进行了训练和识别,完成了样本的故障识别;利用齿轮箱数据集分别从数据长度敏感性、算法特征提取时间、模型诊断性能三种角度对EHDE、精细复合多尺度样本熵、精细复合多尺度模糊熵、精细复合多尺度排列熵、精细复合多尺度散布熵、精细复合多尺度波动散布熵进行了对比研究。研究结果表明:EHDE方法对数据长度的要求较低,在数据长度为512时即可以取得99.1%的平均识别准确率,在诊断稳定性和诊断精度方面均优于其他对比方法;在算法的泛化性实验中,EHDE方法能够以98%的准确率识别齿轮箱的不同故障类型,具有明显的泛化性和通用性。 展开更多
关键词 齿轮箱故障诊断 增强层次多样性熵 野马算法优化支持向量机 数据长度敏感性 算法特征提取时间 模型诊断性能
下载PDF
基于ICEEMDAN-MPE-RF和SVM的齿轮箱特征提取与故障诊断 被引量:2
8
作者 丁晓锋 张宇华 《机车电传动》 北大核心 2023年第1期42-50,共9页
针对齿轮箱非平稳振动信号特征提取难、特征向量冗余度高和故障识别率低的问题,提出基于改进的自适应噪声完备集成经验模态分解(Improved complete ensemble empirical mode decomposition with adaptive noise,ICEEMDAN)、多尺度排列熵... 针对齿轮箱非平稳振动信号特征提取难、特征向量冗余度高和故障识别率低的问题,提出基于改进的自适应噪声完备集成经验模态分解(Improved complete ensemble empirical mode decomposition with adaptive noise,ICEEMDAN)、多尺度排列熵(Multi-scale permutation entropy,MPE)、随机森林(Random forest,RF)特征重要性排序和支持向量机(Support vector machine,SVM)的齿轮箱特征提取与故障诊断方法。首先,通过ICEEMDAN将各种故障状态的齿轮振动信号分解为一系列不同频率分布的本征模态分量(Intrinsic mode functions,IMF);然后,计算各阶IMF的MPE值获得非平稳信号时频分布下的非线性动力学特征;最后,通过RF算法评估特征重要性,选择高重要性敏感特征组成最优特征子集输入SVM进行故障模式识别。试验结果表明,该方法特征提取和表征能力强,在不同工况下的平均识别率可达99.79%,在多工况和小样本数据集上比其他方法更具稳健性。 展开更多
关键词 齿轮箱 改进的自适应噪声完备集成经验模态分解 多尺度排列熵 随机森林 支持向量机 特征提取 故障诊断
下载PDF
VMD结合小波包信息熵和GJO-SVM的电机轴承故障诊断 被引量:1
9
作者 纪京生 周莉 马向阳 《现代制造工程》 CSCD 北大核心 2024年第2期128-136,共9页
针对电机滚动轴承故障特征难以提取从而导致诊断准确率低的问题,提出了一种基于变分模态分解(Variational Modal Decomposition,VMD)结合小波包信息熵(Wavelet Packet Information Entropy,WPIE)的特征提取方法,并采用金豺优化(Golden J... 针对电机滚动轴承故障特征难以提取从而导致诊断准确率低的问题,提出了一种基于变分模态分解(Variational Modal Decomposition,VMD)结合小波包信息熵(Wavelet Packet Information Entropy,WPIE)的特征提取方法,并采用金豺优化(Golden Jackal Optimization,GJO)算法优化后的支持向量机(Support Vector Machine,SVM)进行电机滚动轴承的故障诊断。首先,利用VMD将采集到的信号进行分解,依据局部极小包络熵筛选出最优本征模态(Intrinsic Mode Function,IMF)分量;其次,利用小波包将最优IMF分量再分解,并提取信息熵作为特征向量矩阵;最后,采用GJO算法对支持向量机中的惩罚参数和核参数进行寻优选择,建立GJO-SVM故障诊断模型,将特征向量矩阵输入金豺算法优化支持向量机(GJO-SVM)故障诊断模型中进行故障诊断。将VMD结合小波包信息熵特征提取与VMD结合近似熵特征提取进行对比试验,试验结果表明,VMD结合小波包信息熵特征提取精度提高了2.5%,其特征提取更加优越;将金豺算法优化支持向量机(GJO-SVM)与粒子群优化(Porticle Swarm OPtimization,PSO)算法支持向量机(PSO-SVM)、果蝇优化算法(Fruit fly Optimation Algorithm,FOA)支持向量机(FOA-SVM)进行对比试验,试验结果表明,GJO-SVM其平均准确率达到99.16%,较PSO-SVM、FOA-SVM分别提高了2.5%、3.61%。金豺算法优化支持向量机(GJO-SVM)可以更加有效提取并诊断滚动轴承故障。 展开更多
关键词 变分模态分解 小波包信息熵 金豺优化算法 支持向量机 轴承故障诊断
下载PDF
基于DIGWO-VMD-CMPE的轴承故障识别方法
10
作者 辛昊 鲁玉军 朱轩逸 《机电工程》 CAS 北大核心 2024年第2期205-215,共11页
针对滚动轴承故障信号特征提取困难和识别准确率低的问题,提出了一种基于维度学习的改进灰狼优化算法(DIGWO)优化变分模态分解(VMD)和复合多尺度排列熵(CMPE)的轴承故障识别方法。首先,采用基于维度学习的狩猎(DLH)搜索策略、余弦收敛因... 针对滚动轴承故障信号特征提取困难和识别准确率低的问题,提出了一种基于维度学习的改进灰狼优化算法(DIGWO)优化变分模态分解(VMD)和复合多尺度排列熵(CMPE)的轴承故障识别方法。首先,采用基于维度学习的狩猎(DLH)搜索策略、余弦收敛因子a和个体狼ω位置更新的方法将灰狼优化算法(GWO)改进为DIGWO,并利用DIGWO算法的自适应性优化VMD分解,得到了多个本征模态函数(IMFs);然后,利用复合多尺度排列熵计算IMFs的特征值,选取适当维数的特征,构建了故障特征向量;最后,利用DIGWO算法优化支持向量机(SVM)的惩罚系数C和径向基函数g,建立了DIGWO-SVM滚动轴承故障诊断分类器,并利用滚动轴承的振动数据验证了算法的有效性。研究结果表明:基于CMPE的DIGWO-SVM滚动轴承故障诊断方法能够有效地识别轴承的运行状况,识别准确率达到了99.42%,相较于PSO-SVM、SSA-SVM方法提高了7.75%、1.68%,证明了该方法的分类性能在滚动轴承故障诊断中更具优势。 展开更多
关键词 基于维度学习的改进灰狼优化算法 变分模态分解 复合多尺度排列熵 支持向量机 本征模态函数 基于维度学习的狩猎
下载PDF
基于改进多尺度均值排列熵和参数优化SVM的齿轮箱故障诊断方法
11
作者 郭盼盼 张文斌 +1 位作者 崔奔 徐晗 《机械传动》 北大核心 2024年第4期154-161,共8页
当齿轮箱传动系统发生故障时,不同振动信号的多尺度均值排列熵(Multi-scale Mean Per⁃mutation Entropy,MMPE)与其故障状态有一定的对应关系,但MMPE提取故障特征的效果取决于参数的选取。因此,提出了一种基于改进MMPE和参数优化支持向量... 当齿轮箱传动系统发生故障时,不同振动信号的多尺度均值排列熵(Multi-scale Mean Per⁃mutation Entropy,MMPE)与其故障状态有一定的对应关系,但MMPE提取故障特征的效果取决于参数的选取。因此,提出了一种基于改进MMPE和参数优化支持向量机(Support Vector Machine,SVM)的齿轮箱故障识别方法。首先,引用粒子群优化(Particle Swarm Optimization,PSO)算法对MMPE的参数进行优化;其次,对采集到的齿轮振动信号计算其MMPE;最后,采用PSO-SVM对齿轮的故障状态进行了识别。试验结果验证了所提方法的有效性且具有较高的准确率。 展开更多
关键词 多尺度均值排列熵 粒子群优化算法 支持向量机 故障诊断 齿轮
下载PDF
ALIF-MMPE结合DAG-SVM的滚动轴承故障诊断 被引量:8
12
作者 韩美东 张金豹 赵永强 《机械科学与技术》 CSCD 北大核心 2020年第9期1358-1365,共8页
针对滚动轴承故障诊断中非平稳振动信号下的有效故障特征提取问题,提出一种基于自适应局部迭代滤波、多元多尺度排列熵和有向无环图算法支持向量机的滚动轴承故障诊断方法。自适应局部迭代滤波通过构建自适应滤波函数,能够有效抑制噪声... 针对滚动轴承故障诊断中非平稳振动信号下的有效故障特征提取问题,提出一种基于自适应局部迭代滤波、多元多尺度排列熵和有向无环图算法支持向量机的滚动轴承故障诊断方法。自适应局部迭代滤波通过构建自适应滤波函数,能够有效抑制噪声和模态混叠,经自适应分解后得到若干本征模态函数。仿真结果表明其效果优于经验模态分解。然后利用多元多尺度排列熵对包含显著故障信息的本征模态函数进行信息融合和特征提取,组成故障状态特征集。采用主成分分析对故障状态特征集进行降维,随机抽取部分样本带入有向无环图算法支持向量机中进行训练,其它则作为测试样本进行故障识别和诊断。试验故障诊断结果表明:自适应局部迭代滤波下多元多尺度排列熵优于多个本征模态函数下的多尺度排列熵和经验模态分解下的多元多尺度排列熵;本文方法能准确地识别滚动轴承不同的故障类型及故障程度。 展开更多
关键词 轴承故障诊断 自适应局部迭代滤波 多元多尺度排列熵 有向无环图算法支持向量机
下载PDF
基于MPE与PSO-SVM的滚动轴承故障诊断 被引量:21
13
作者 刁宁昆 马怀祥 +1 位作者 王金师 刘帅 《电子测量技术》 北大核心 2021年第21期44-48,共5页
滚动轴承是旋转机械的重要部件之一,针对滚动轴承故障诊断问题,提出了一种多尺度排列熵(MPE)与粒子群优化(PSO)的支持向量机(SVM)相结合的算法。利用MPE方法得到轴承故障信号的故障特征,并将其作为特征向量输入PSO-SVM模型中,使用凯斯... 滚动轴承是旋转机械的重要部件之一,针对滚动轴承故障诊断问题,提出了一种多尺度排列熵(MPE)与粒子群优化(PSO)的支持向量机(SVM)相结合的算法。利用MPE方法得到轴承故障信号的故障特征,并将其作为特征向量输入PSO-SVM模型中,使用凯斯西储大学轴承故障数据进行验证,发现该方法可以有效进行滚动轴承的故障识别。同时将该方法与多尺度排列熵结合传统的SVM方法以及使用网格搜索优化的SVM方法所得故障分类结果进行比较,发现该方法在滚动轴承故障诊断的时效性以及准确率方面具有一定的优越性。 展开更多
关键词 多尺度排列熵 粒子群优化 支持向量机 滚动轴承
下载PDF
基于ICEEMDAN-MPE和AO-LSSVM的滚动轴承故障诊断 被引量:10
14
作者 李铭 何毅斌 +2 位作者 马东 唐权 胡明涛 《电子测量技术》 北大核心 2022年第23期66-71,共6页
针对滚动轴承故障诊断中特征提取困难和故障类型识别准确率偏低等情况,提出一种基于改进型自适应噪声完整集成经验模态分解(ICEEMDAN)与多尺度排列熵(MPE)结合天鹰算法(AO)优化最小二乘支持向量机(LSSVM)正则化参数和核参数的故障诊断... 针对滚动轴承故障诊断中特征提取困难和故障类型识别准确率偏低等情况,提出一种基于改进型自适应噪声完整集成经验模态分解(ICEEMDAN)与多尺度排列熵(MPE)结合天鹰算法(AO)优化最小二乘支持向量机(LSSVM)正则化参数和核参数的故障诊断方法。首先通过ICEEMDAN对轴承原始振动信号进行分解,其次根据相关系数和方差贡献率双原则选取符合标准的本征模态分量(IMF),并计算对应分量的MPE,以全面获取故障特征信息;最后将其构成多维特征向量,利用AO-LSSVM辨识模型实现对轴承故障诊断。同时进行多组对比实验,研究结果表明了所提方法在滚动轴承故障诊断中的优越性且识别准确率可达98.95%。 展开更多
关键词 故障诊断 ICEEMDAN 多尺度排列熵 天鹰算法 最小二乘支持向量机
下载PDF
基于MPE-ANN-SVM的癫痫脑电检测分类研究 被引量:1
15
作者 石雨菲 王瑶 +3 位作者 胡珊 田翔华 陈子怡 周毅 《生物医学工程研究》 2022年第4期353-358,共6页
针对以往检测癫痫的脑电自动分类算法存在泛化性和鲁棒性不足的问题,本研究综合了非线性动力学与机器学习的优点,使用多尺度排列熵(MPE)与人工神经网络提取脑电特征、支持向量机进行分类决策,提出了基于MPE-ANN-SVM的癫痫脑电分类模型... 针对以往检测癫痫的脑电自动分类算法存在泛化性和鲁棒性不足的问题,本研究综合了非线性动力学与机器学习的优点,使用多尺度排列熵(MPE)与人工神经网络提取脑电特征、支持向量机进行分类决策,提出了基于MPE-ANN-SVM的癫痫脑电分类模型。该模型在13例临床数据上多次测试,平均识别率、敏感性和特异性分别达到94.01%、94.51%和93.52%。该模型分类指标均优于同样本下的人工神经网络模型分类结果与支持向量机基线模型,能够为癫痫脑电检测算法研究提供支持。 展开更多
关键词 癫痫 脑电信号 脑电检测 非线性动力学 机器学习 多尺度排列熵 人工神经网络 支持向量机
下载PDF
基于FCMMWPE-BSASVM组合算法的调心球轴承故障诊断研究 被引量:1
16
作者 张昭晗 齐俊平 +1 位作者 李峰 崔金巍 《制造技术与机床》 北大核心 2022年第11期15-19,共5页
为了提高机械旋转系统上调心球轴承特征提取和故障识别能力,设计了一种精细复合多元多尺度加权排列熵(fine composite multivariate multi-scale weighted permutation entropy,FCMMWPE)与天牛须搜索支持向量机算法(beetle antennae sea... 为了提高机械旋转系统上调心球轴承特征提取和故障识别能力,设计了一种精细复合多元多尺度加权排列熵(fine composite multivariate multi-scale weighted permutation entropy,FCMMWPE)与天牛须搜索支持向量机算法(beetle antennae search algorithm-supportvectormachine,BSASVM)相结合的故障特征提取方法,并采用等度规映射(Isomap)进行故障识别,最后开展故障诊断实例分析。研究结果表明:采用FCMMWPE算法处理状态熵值达到最高,形成更平滑的熵值曲线,广义粗粒化方法具备明显优势。轴承产生局部故障时,形成具有规律特征的振动信号,表明采用FCMMWPE提取调心球轴承故障特征满足可靠性条件并具备明显优势。对文章构建的FCMMWPE与Isomap特征集进行运行故障识别时实现了99.9%的准确率,实现调心球轴承故障高效识别。BSASVM满足更优的故障识别性能,具备更优的模式识别性能和更高处理效率。该研究可以拓宽到其他的机械传动领域,具有很好的应用价值。 展开更多
关键词 精细复合多元多尺度加权排列熵 支持向量机 等度规映射 调心球轴承 故障诊断
下载PDF
基于VMD-MMPE的轧机轴承滚动体与保持架故障诊断 被引量:3
17
作者 计江 赵琛 王勇勤 《振动.测试与诊断》 EI CSCD 北大核心 2023年第2期290-297,409,共9页
针对板带轧机轴承工作环境恶劣、保持架与滚动体极易损坏、信号噪声大、识别困难以及实际工况对诊断速度要求高等问题,首先,提出粒子群优化变分模态分解(particle swarm optimization-variational mode decomposition,简称PSO-VMD)和多... 针对板带轧机轴承工作环境恶劣、保持架与滚动体极易损坏、信号噪声大、识别困难以及实际工况对诊断速度要求高等问题,首先,提出粒子群优化变分模态分解(particle swarm optimization-variational mode decomposition,简称PSO-VMD)和多元多尺度排列熵(multivariate multiscale permutation entropy,简称MMPE)的故障诊断方法,并结合粒子群优化支持向量机(particle swarm optimization-support vector machine,简称PSO-SVM)实现故障分类;其次,轴承振动信号经VMD处理为若干模态分量(intrinsic mode functions,简称IMF),选最优分量进行包络分析;然后,针对轧机轴承垂直水平轴向振动差别较大且受较大径向力与轴向力的特点,采用MMPE并考虑3维振动信号的4个分量的MMPE值与时域指标组成特征向量;最后,基于PSO-SVM模型对方法的有效性进行验证。计算和实验结果与集合经验模态分解(ensemble empirical mode decomposition,简称EEMD)与局部均值分解(local mean decomposition,简称LMD)方法对比表明,VMD-MMPE可以优化模型的输入,提高模型的诊断正确率和速度,实现轴承保持架与滚动体不同部位和不同损伤程度的故障诊断,具有重要的工程意义。 展开更多
关键词 轧机轴承 变分模态分解 包络谱 多元多尺度排列熵 粒子群优化支持向量机 故障诊断
下载PDF
基于EEMD-MPE-LSSVM的光伏发电功率预测 被引量:18
18
作者 朱瑞金 龚雪娇 张娟娟 《中国测试》 CAS 北大核心 2021年第9期158-162,共5页
为提高光伏并网的调度效率和运行稳定性,提出一种基于EEMD-MPE-LSSVM的光伏发电功率预测方法。首先,选取光伏发电功率部分历史数据作为训练样本,采用集合经验模态分解(EEMD)方式对历史功率曲线进行分解;然后,对不同频率特性的分解模态... 为提高光伏并网的调度效率和运行稳定性,提出一种基于EEMD-MPE-LSSVM的光伏发电功率预测方法。首先,选取光伏发电功率部分历史数据作为训练样本,采用集合经验模态分解(EEMD)方式对历史功率曲线进行分解;然后,对不同频率特性的分解模态分量进行最小二乘支持向量机(LSSVM)预测,并结合初始功率曲线迭代误差完成预测值重构;最后,利用多尺度排列熵(MPE)量化不同天气类型,构建在晴天、阴天、雨雪、突变天气下输入特征向量,同时参与光伏发电功率LSSVM预测,减少天气因素对预测值的影响。通过对光伏发电功率50天内的真实值和预测值进行对比试验,结果表明该预测算法的平均相对误差(MRE)和均方根误差(RMES)分别为1.56%、3.14%,证明其有效,同时具有小样本、自适应的优势。 展开更多
关键词 光伏发电功率预测 最小二乘法支持向量机 集合经验模态分解 多尺度排列熵
下载PDF
基于改进层次基本熵融合SMA-SVM模型的轴承故障诊断方法 被引量:3
19
作者 张捷 王华 孙顺红 《机电工程》 CAS 北大核心 2023年第7期1047-1053,1129,共8页
针对煤矿机械轴承的故障特征提取和故障状态识别问题,提出了改进层次基本熵(IHBSE)特征提取融合黏菌优化(SMA)—支持向量机(SVM)分类模型的煤矿机械轴承故障诊断方法。首先,引入了能够同时分析信号低频和高频信息的IHBSE方法,并将其用... 针对煤矿机械轴承的故障特征提取和故障状态识别问题,提出了改进层次基本熵(IHBSE)特征提取融合黏菌优化(SMA)—支持向量机(SVM)分类模型的煤矿机械轴承故障诊断方法。首先,引入了能够同时分析信号低频和高频信息的IHBSE方法,并将其用于捕捉不同状态下,煤矿机械轴承振动信号中的多维故障特征,构建了特征向量;然后,采用具有优异全局寻优性能的黏菌算法,对支持向量机的惩罚系数和核函数的最佳值进行了搜索,提出了黏菌算法—支持向量机(SMA-SVM)模型;最后,利用部分特征样本对诊断模型进行了训练,并采用训练完毕的具有最佳参数的SMA-SVM分类器,进行了轴承故障类型和严重程度的判断。研究结果表明:所提出的煤矿机械轴承故障诊断方法可以有效地识别煤矿机械轴承的运行状态,分类准确率达到了1,而在多次实验下的平均准确率也高于0.98,对实际工程应用具有一定的参考价值。 展开更多
关键词 煤矿机械轴承 故障诊断 改进层次基本熵 黏菌优化算法 支持向量机 故障状态识别
下载PDF
基于ALIF-PE-GOLSSVM的齿轮箱故障诊断 被引量:5
20
作者 黄英 李喜梅 +1 位作者 叶仁虎 王睿 《机械传动》 北大核心 2022年第11期146-153,共8页
提出了基于基因优化最小二乘支持向量机(Gene optimized least squares support vector ma⁃chine,GOLSSVM)的自适应局部迭代滤波(Adaptive local iterative fittering,ALIF)和排列熵(Permuta⁃tion entropy,PE)的故障诊断方法,并将该方... 提出了基于基因优化最小二乘支持向量机(Gene optimized least squares support vector ma⁃chine,GOLSSVM)的自适应局部迭代滤波(Adaptive local iterative fittering,ALIF)和排列熵(Permuta⁃tion entropy,PE)的故障诊断方法,并将该方法应用于齿轮箱的诊断,成功实现了对齿轮箱4种故障种类的识别。针对排列熵无法直接识别齿轮箱不同故障类别的问题,利用ALIF方法相较于EMD方法在去除残余噪声及抑制模式混叠上的优势,使用ALIF方法对故障信号进行降噪,提取有效分量,再计算有分量的PE值(C-PE值),以获得振动信号的多尺度特性;然后,使用基因算法对最小二乘支持向量机(Least squares support vector machine,LSSVM)进行了优化;最后,将特征向量输入到GOLSSVM,对故障特征进行分类。结果表明,所提方法相比BP神经网络和SVM在故障识别精度上有优势。 展开更多
关键词 基因优化 支持向量机 自适应局部迭代滤波 排列熵
下载PDF
上一页 1 2 12 下一页 到第
使用帮助 返回顶部