期刊文献+
共找到4,670篇文章
< 1 2 234 >
每页显示 20 50 100
Entanglement and Volume Monogamy Features of Permutation Symmetric N-Qubit Pure States with N-Distinct Spinors: GHZ and States
1
作者   Sudha Alevoor Raghavendra Usha Devi +4 位作者 Akshata Shenoy Hejamadi Hosapete Seshadri Karthik Humera Talath Bada Palaiah Govindaraja Attipat Krishnaswamy Rajagopal 《Journal of Quantum Information Science》 CAS 2024年第2期29-51,共23页
We explore the entanglement features of pure symmetric N-qubit states characterized by N-distinct spinors with a particular focus on the Greenberger-Horne-Zeilinger (GHZ) states and , an equal superposition of W and o... We explore the entanglement features of pure symmetric N-qubit states characterized by N-distinct spinors with a particular focus on the Greenberger-Horne-Zeilinger (GHZ) states and , an equal superposition of W and obverse W states. Along with a comparison of pairwise entanglement and monogamy properties, we explore the geometric information contained in them by constructing their canonical steering ellipsoids. We obtain the volume monogamy relations satisfied by states as a function of number of qubits and compare with the maximal monogamy property of GHZ states. 展开更多
关键词 permutation Symmetric States MONOGAMY Pairwise Entanglement
下载PDF
Weak Fault Feature Extraction of the Rotating Machinery Using Flexible Analytic Wavelet Transform and Nonlinear Quantum Permutation Entropy
2
作者 Lili Bai Wenhui Li +3 位作者 He Ren Feng Li TaoYan Lirong Chen 《Computers, Materials & Continua》 SCIE EI 2024年第6期4513-4531,共19页
Addressing the challenges posed by the nonlinear and non-stationary vibrations in rotating machinery,where weak fault characteristic signals hinder accurate fault state representation,we propose a novel feature extrac... Addressing the challenges posed by the nonlinear and non-stationary vibrations in rotating machinery,where weak fault characteristic signals hinder accurate fault state representation,we propose a novel feature extraction method that combines the Flexible Analytic Wavelet Transform(FAWT)with Nonlinear Quantum Permutation Entropy.FAWT,leveraging fractional orders and arbitrary scaling and translation factors,exhibits superior translational invariance and adjustable fundamental oscillatory characteristics.This flexibility enables FAWT to provide well-suited wavelet shapes,effectively matching subtle fault components and avoiding performance degradation associated with fixed frequency partitioning and low-oscillation bases in detecting weak faults.In our approach,gearbox vibration signals undergo FAWT to obtain sub-bands.Quantum theory is then introduced into permutation entropy to propose Nonlinear Quantum Permutation Entropy,a feature that more accurately characterizes the operational state of vibration simulation signals.The nonlinear quantum permutation entropy extracted from sub-bands is utilized to characterize the operating state of rotating machinery.A comprehensive analysis of vibration signals from rolling bearings and gearboxes validates the feasibility of the proposed method.Comparative assessments with parameters derived from traditional permutation entropy,sample entropy,wavelet transform(WT),and empirical mode decomposition(EMD)underscore the superior effectiveness of this approach in fault detection and classification for rotating machinery. 展开更多
关键词 Rotating machinery quantum theory nonlinear quantum permutation entropy Flexible Analytic Wavelet Transform(FAWT) feature extraction
下载PDF
真正的经典复刻Musical Fidelity A1纯A类合并式功放重现江湖
3
作者 阿晓 《视听前线》 2024年第8期78-81,共4页
毫无疑问,英国是这个星球上音响文化底蕴最深厚的国家之一,这里孕育了众多著名的音响品牌,其中音响爱好者所熟知的Musical Fidelity便是夜夜者之一。Musical Fidelity创立于1982年,至今已有超过40年的历史,其创始人为Antony Michaelson... 毫无疑问,英国是这个星球上音响文化底蕴最深厚的国家之一,这里孕育了众多著名的音响品牌,其中音响爱好者所熟知的Musical Fidelity便是夜夜者之一。Musical Fidelity创立于1982年,至今已有超过40年的历史,其创始人为Antony Michaelson先生。Musical Fidelity的中文名为“音乐传真”,这个名字不仅悦耳动听,还蕴含着深刻的意义。 展开更多
关键词 音响品牌 悦耳动听 fidelity
下载PDF
High-fidelity topological quantum state transfers in a cavity-magnon system
4
作者 包茜茜 郭刚峰 +1 位作者 杨煦 谭磊 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第8期150-155,共6页
We propose a scheme for realizing high-fidelity topological state transfer via the topological edge states in a onedimensional cavity-magnon system.It is found that the cavity-magnon system can be mapped analytically ... We propose a scheme for realizing high-fidelity topological state transfer via the topological edge states in a onedimensional cavity-magnon system.It is found that the cavity-magnon system can be mapped analytically into the generalized Su-Schrieffer-Heeger model with tunable cavity-magnon coupling.It is shown that the edge state can be served as a quantum channel to realize the photonic and magnonic state transfers by adjusting the coupling strength between adjacent cavity modes.Further,our scheme can realize the quantum state transfer between photonic state and magnonic state by changing the cavity-magnon coupling strength.With the numerical simulation,we quantitatively show that the photonic,magnonic and magnon-to-photon state transfers can be achieved with high fidelity in the cavity-magnon system.Spectacularly,three different types of quantum state transfer schemes can be even transformed into each other in a controllable fashion.The Su-Schrieffer-Heeger model based on the cavity-magnon system provides us a tunable platform to engineer the transport of photon and magnon,which may have potential applications in topological quantum processing. 展开更多
关键词 topological state transfer cavity-magnon system high fidelity
下载PDF
Modified 2 Satisfiability Reverse Analysis Method via Logical Permutation Operator
5
作者 Siti Zulaikha Mohd Jamaludin MohdAsyraf Mansor +3 位作者 Aslina Baharum Mohd Shareduwan Mohd Kasihmuddin Habibah A.Wahab Muhammad Fadhil Marsani 《Computers, Materials & Continua》 SCIE EI 2023年第2期2853-2870,共18页
The effectiveness of the logic mining approach is strongly correlated to the quality of the induced logical representation that represent the behaviour of the data.Specifically,the optimum induced logical representati... The effectiveness of the logic mining approach is strongly correlated to the quality of the induced logical representation that represent the behaviour of the data.Specifically,the optimum induced logical representation indicates the capability of the logic mining approach in generalizing the real datasets of different variants and dimensions.The main issues with the logic extracted by the standard logic mining techniques are lack of interpretability and the weakness in terms of the structural and arrangement of the 2 Satisfiability logic causing lower accuracy.To address the issues,the logical permutation serves as an alternative mechanism that can enhance the probability of the 2 Satisfiability logical rule becoming true by utilizing the definitive finite arrangement of attributes.This work aims to examine and analyze the significant effect of logical permutation on the performance of data extraction ability of the logic mining approach incorporated with the recurrent discrete Hopfield Neural Network.Based on the theory,the effect of permutation and associate memories in recurrent Hopfield Neural Network will potentially improve the accuracy of the existing logic mining approach.To validate the impact of the logical permutation on the retrieval phase of the logic mining model,the proposed work is experimentally tested on a different class of the benchmark real datasets ranging from the multivariate and timeseries datasets.The experimental results show the significant improvement in the proposed logical permutation-based logic mining according to the domains such as compatibility,accuracy,and competitiveness as opposed to the plethora of standard 2 Satisfiability Reverse Analysis methods. 展开更多
关键词 Logic mining logical permutation discrete hopfield neural network knowledge extraction
下载PDF
A Quantum Tanimoto Coefficient Fidelity for Entanglement Measurement
6
作者 Yangyang Zhao Fuyuan Xiao +1 位作者 Masayoshi Aritsugi Weiping Ding 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2023年第2期439-450,共12页
Fidelity plays an important role in quantum information processing,which provides a basic scale for comparing two quantum states.At present,one of the most commonly used fidelities is Uhlmann-Jozsa(U-J)fidelity.Howeve... Fidelity plays an important role in quantum information processing,which provides a basic scale for comparing two quantum states.At present,one of the most commonly used fidelities is Uhlmann-Jozsa(U-J)fidelity.However,U-J fidelity needs to calculate the square root of the matrix,which is not trivial in the case of large or infinite density matrices.Moreover,U-J fidelity is a measure of overlap,which has limitations in some cases and cannot reflect the similarity between quantum states well.Therefore,a novel quantum fidelity measure called quantum Tanimoto coefficient(QTC)fidelity is proposed in this paper.Unlike other existing fidelities,QTC fidelity not only considers the overlap between quantum states,but also takes into account the separation between quantum states for the first time,which leads to a better performance of measure.Specifically,we discuss the properties of the proposed QTC fidelity.QTC fidelity is compared with some existing fidelities through specific examples,which reflects the effectiveness and advantages of QTC fidelity.In addition,based on the QTC fidelity,three discrimination coefficients d_(1)^(QTC),d_(2)^(QTC),and d_^(3)^(QTC)are defined to measure the difference between quantum states.It is proved that the discrimination coefficient d_(3)^(QTC)is a true metric.Finally,we apply the proposed QTC fidelity-based discrimination coefficients to measure the entanglement of quantum states to show their practicability. 展开更多
关键词 Distance measure entanglement measurement fidelity measure quantum Tanimoto coefficient(QTC) similarity measure UNCERTAINTY
下载PDF
Quantum Codes Do Not Increase Fidelity against Isotropic Errors
7
作者 Jesús Lacalle Luis Miguel Pozo-Coronado +1 位作者 André Luiz Fonseca de Oliveira Rafael Martín-Cuevas 《Journal of Applied Mathematics and Physics》 2023年第2期555-571,共17页
In this article, we study the ability of error-correcting quantum codes to increase the fidelity of quantum states throughout a quantum computation. We analyze arbitrary quantum codes that encode all qubits involved i... In this article, we study the ability of error-correcting quantum codes to increase the fidelity of quantum states throughout a quantum computation. We analyze arbitrary quantum codes that encode all qubits involved in the computation, and we study the evolution of n-qubit fidelity from the end of one application of the correcting circuit to the end of the next application. We assume that the correcting circuit does not introduce new errors, that it does not increase the execution time (i.e. its application takes zero seconds) and that quantum errors are isotropic. We show that the quantum code increases the fidelity of the states perturbed by quantum errors but that this improvement is not enough to justify the use of quantum codes. Namely, we prove that, taking into account that the time interval between the application of the two corrections is multiplied (at least) by the number of qubits n (due to the coding), the best option is not to use quantum codes, since the fidelity of the uncoded state over a time interval n times smaller is greater than that of the state resulting from the quantum code correction. 展开更多
关键词 Quantum Error Correcting Codes Isotropic Quantum Computing Errors Quantum Computing Error fidelity Quantum Computing Error Variance
下载PDF
Short-Term Prediction of Photovoltaic Power Generation Based on LMD Permutation Entropy and Singular Spectrum Analysis
8
作者 Wenchao Ma 《Energy Engineering》 EI 2023年第7期1685-1699,共15页
The power output state of photovoltaic power generation is affected by the earth’s rotation and solar radiation intensity.On the one hand,its output sequence has daily periodicity;on the other hand,it has discrete ra... The power output state of photovoltaic power generation is affected by the earth’s rotation and solar radiation intensity.On the one hand,its output sequence has daily periodicity;on the other hand,it has discrete randomness.With the development of new energy economy,the proportion of photovoltaic energy increased accordingly.In order to solve the problem of improving the energy conversion efficiency in the grid-connected optical network and ensure the stability of photovoltaic power generation,this paper proposes the short-termprediction of photovoltaic power generation based on the improvedmulti-scale permutation entropy,localmean decomposition and singular spectrum analysis algorithm.Firstly,taking the power output per unit day as the research object,the multi-scale permutation entropy is used to calculate the eigenvectors under different weather conditions,and the cluster analysis is used to reconstruct the historical power generation under typical weather rainy and snowy,sunny,abrupt,cloudy.Then,local mean decomposition(LMD)is used to decompose the output sequence,so as to extract more detail components of the reconstructed output sequence.Finally,combined with the weather forecast of the Meteorological Bureau for the next day,the singular spectrumanalysis algorithm is used to predict the photovoltaic classification of the recombination decomposition sequence under typical weather.Through the verification and analysis of examples,the hierarchical prediction experiments of reconstructed and non-reconstructed output sequences are compared.The results show that the algorithm proposed in this paper is effective in realizing the short-term prediction of photovoltaic generator,and has the advantages of simple structure and high prediction accuracy. 展开更多
关键词 Photovoltaic power generation short term forecast multiscale permutation entropy local mean decomposition singular spectrum analysis
下载PDF
Cloud Resource Integrated Prediction Model Based on Variational Modal Decomposition-Permutation Entropy and LSTM
9
作者 Xinfei Li Xiaolan Xie +1 位作者 Yigang Tang Qiang Guo 《Computer Systems Science & Engineering》 SCIE EI 2023年第11期2707-2724,共18页
Predicting the usage of container cloud resources has always been an important and challenging problem in improving the performance of cloud resource clusters.We proposed an integrated prediction method of stacking co... Predicting the usage of container cloud resources has always been an important and challenging problem in improving the performance of cloud resource clusters.We proposed an integrated prediction method of stacking container cloud resources based on variational modal decomposition(VMD)-Permutation entropy(PE)and long short-term memory(LSTM)neural network to solve the prediction difficulties caused by the non-stationarity and volatility of resource data.The variational modal decomposition algorithm decomposes the time series data of cloud resources to obtain intrinsic mode function and residual components,which solves the signal decomposition algorithm’s end-effect and modal confusion problems.The permutation entropy is used to evaluate the complexity of the intrinsic mode function,and the reconstruction based on similar entropy and low complexity is used to reduce the difficulty of modeling.Finally,we use the LSTM and stacking fusion models to predict and superimpose;the stacking integration model integrates Gradient boosting regression(GBR),Kernel ridge regression(KRR),and Elastic net regression(ENet)as primary learners,and the secondary learner adopts the kernel ridge regression method with solid generalization ability.The Amazon public data set experiment shows that compared with Holt-winters,LSTM,and Neuralprophet models,we can see that the optimization range of multiple evaluation indicators is 0.338∼1.913,0.057∼0.940,0.000∼0.017 and 1.038∼8.481 in root means square error(RMSE),mean absolute error(MAE),mean absolute percentage error(MAPE)and variance(VAR),showing its stability and better prediction accuracy. 展开更多
关键词 Cloud resource prediction variational modal decomposition permutation entropy long and short-term neural network stacking integration
下载PDF
分布式装配置换流水车间调度问题研究综述 被引量:1
10
作者 张静 宋洪波 林剑 《计算机工程与应用》 CSCD 北大核心 2024年第6期1-9,共9页
近几十年来,现代制造业发展迅速,一种趋势是在分布式生产工厂进行工件的加工,待完成后到装配工厂集中装配成最终产品。该模式在带来诸多好处的同时,对资源调度提出了新的挑战。针对分布式装配置换流水车间调度问题(distributed assembly... 近几十年来,现代制造业发展迅速,一种趋势是在分布式生产工厂进行工件的加工,待完成后到装配工厂集中装配成最终产品。该模式在带来诸多好处的同时,对资源调度提出了新的挑战。针对分布式装配置换流水车间调度问题(distributed assembly permutation flowshop scheduling problem,DAPFSP),介绍了DAPFSP的背景和存在的主要困难,进而对以最小化最大完工时间为优化目标的DAPFSP,从数学模型、编解码策略、全局和局部搜索算法角度进行探讨,分别综述了以最小化总流程时间等为优化目标,具有零等待等约束,以及考虑准备时间等因素的DAPFSP研究成果。最后,对有待进一步开展的研究工作进行展望。 展开更多
关键词 分布式装配 置换流水车间 资源调度 搜索算法
下载PDF
基于改进变分模态分解和优化堆叠降噪自编码器的轴承故障诊断 被引量:1
11
作者 张彬桥 舒勇 江雨 《计算机集成制造系统》 EI CSCD 北大核心 2024年第4期1408-1421,共14页
针对滚动轴承在噪声干扰下故障特征难以提取的问题,提出一种改进变分模态分解(VMD)和复合缩放排列熵(CZPE)的特征提取新方法,并利用优化堆叠降噪自编码器(SDAE)进行故障分类。首先,提出由“余弦相似度—峭度—包络熵”新综合评价指标自... 针对滚动轴承在噪声干扰下故障特征难以提取的问题,提出一种改进变分模态分解(VMD)和复合缩放排列熵(CZPE)的特征提取新方法,并利用优化堆叠降噪自编码器(SDAE)进行故障分类。首先,提出由“余弦相似度—峭度—包络熵”新综合评价指标自适应优化分解参数的改进VMD方法,并通过该指标筛选分解后的本征模态函数(IMF)分量;然后,为提取更全面的故障特征,引入新的复合缩放排列熵对各有效IMF的故障特征进行量化;最后,提出一种基于鼠群优化算法(RSO)与麻雀搜索算法(SSA)的混合算法优化SDAE网络超参数,将故障特征输入优化后SDAE网络中得到分类结果。采用美国CWRU轴承数据集进行验证,实验结果表明该方法能全面稳定地提取背景噪声下的故障特征,且与其他方法相比具有更好的抗噪性能和更高的故障诊断准确率。 展开更多
关键词 变分模态分解 综合评价指标 复合缩放排列熵 混合算法 堆叠降噪自编码器
下载PDF
基于信号图像化和CNN-ResNet的配电网单相接地故障选线方法 被引量:1
12
作者 缪欣 张忠锐 +1 位作者 郭威 侯思祖 《中国测试》 CAS 北大核心 2024年第6期157-166,共10页
配电网发生单相接地故障时,零序电流呈现较强的非线性与非平稳性,故障选线较为困难,针对此问题,提出一种基于信号图像化和卷积神经网络-残差网络的配电网单相接地故障选线方法。首先,利用排列熵优化变分模态分解算法的参数,将零序电流... 配电网发生单相接地故障时,零序电流呈现较强的非线性与非平稳性,故障选线较为困难,针对此问题,提出一种基于信号图像化和卷积神经网络-残差网络的配电网单相接地故障选线方法。首先,利用排列熵优化变分模态分解算法的参数,将零序电流信号分解成一系列固有模态函数;其次,引入新的数据预处理方式,将固有模态函数转成二维图像,获得零序电流信号的时频特征图;最后,利用一维卷积神经网络提取零序电流信号的相关性和特征,利用残差网络提取时频特征图的特征,将两个网络融合,构建混合卷积神经网络结构,实现故障选线。仿真与实验结果表明,该方法能够在高阻接地、采样时间不同步、强噪声等情况下准确地选择出故障线路,可满足配电网对故障选线准确性和可靠性的需求。 展开更多
关键词 变分模态分解 卷积神经网络 残差网络 故障选线 排列熵
下载PDF
基于tSNE多特征融合的JTC轨旁设备故障检测 被引量:2
13
作者 武晓春 郜文祥 《铁道科学与工程学报》 EI CAS CSCD 北大核心 2024年第3期1244-1255,共12页
无绝缘轨道电路(Jointless Track Circuit,JTC)的轨旁设备在室外长期运营过程中,其可靠性会逐渐降低,进而给列车行车安全带来严重威胁。以轨道电路读取器(Track Circuit Reader,TCR)感应电压为基础,针对JTC故障诊断研究中轨旁设备故障... 无绝缘轨道电路(Jointless Track Circuit,JTC)的轨旁设备在室外长期运营过程中,其可靠性会逐渐降低,进而给列车行车安全带来严重威胁。以轨道电路读取器(Track Circuit Reader,TCR)感应电压为基础,针对JTC故障诊断研究中轨旁设备故障类型复杂和故障特征提取不充分等问题,提出一种基于t分布随机邻域嵌入(t-distribution Stochastic Neighbor Embedding,tSNE)多特征融合的JTC轨旁设备故障检测模型。首先,根据不同轨旁设备故障对TCR感应电压信号的影响,分析各轨旁设备的故障特性。其次,提取TCR感应电压信号的方差、有效值、峰值因子等幅值域特征,以及排列熵、散布熵特征构成原始故障特征集。为了去除其中的冗余信息,得到具有较高判别性的融合流形特征,利用tSNE算法进行特征融合。最后输入深度残差网络(Deep Residual Network,DRN)得到故障检测混淆矩阵,实现轨旁设备故障定位。实验结果表明:tSNE算法融合后的特征在异类和同类故障样本之间分别有较大的类间间距和较小的类内间距,相比主成分分析(Principal Component Analysis, PCA)、随机相似性嵌入(Stochastic Proximity Embedding, SPE)、随机邻域嵌入(Stochastic Neighbor Embedding,SNE)算法具有更优的融合特征提取效果。此外,结合DRN可以有效识别多种轨旁设备故障,达到98.28%的故障检测准确率。通过现场信号进行实例验证,结果表明该故障检测模型能满足铁路现场对室外设备进行故障定位的实际需求。 展开更多
关键词 轨旁设备 幅值域 排列熵 散布熵 多特征融合 故障检测
下载PDF
改进多目标蜂群算法优化洗出运动及仿真实验 被引量:1
14
作者 王辉 彭乐 《系统仿真学报》 CAS CSCD 北大核心 2024年第2期436-448,共13页
针对经典洗出算法参数选择不当导致信号缺失,引起失真,影响洗出效果等问题,提出一种改进的多目标人工蜂群算法,利用该算法对经典洗出算法中的滤波器参数进行优化来改善洗出算法的洗出效果。针对传统蜂群算法初始化和局部优化中存在的问... 针对经典洗出算法参数选择不当导致信号缺失,引起失真,影响洗出效果等问题,提出一种改进的多目标人工蜂群算法,利用该算法对经典洗出算法中的滤波器参数进行优化来改善洗出算法的洗出效果。针对传统蜂群算法初始化和局部优化中存在的问题,引入Circle映射和Pareto局部优化算法;建立人体感知误差模型、加速度差值模型、位移模型,将模型函数作为目标函数,用改进后的多目标人工蜂群算法对经典洗出算法进行参数优化;建立仿真模型对优化后的洗出算法进行仿真验证,应用飞行模拟器运动实验平台进行实验验证。结果表明:经优化后的洗出算法,洗出逼真度得到有效提升,降低了误差峰值,改善了相位延迟,节省了运动空间。 展开更多
关键词 多目标优化 人工蜂群算法 洗出算法 参数优化 动感逼真度
下载PDF
基于虚拟现实的虚拟仿真建模及渲染技术 被引量:1
15
作者 梁振刚 郝雪达 《科技创新与应用》 2024年第14期37-40,共4页
虚拟现实技术能够创造出逼真的虚拟环境,为能够更加快速地建立模型,该文结合相关工具和Unity3D平台开发仿真建模及渲染技术。通过工具收集真实地形的数据,然后进行相关的数据处理并生成数据集合。通过使用Unity3D中地形工具进行数据读... 虚拟现实技术能够创造出逼真的虚拟环境,为能够更加快速地建立模型,该文结合相关工具和Unity3D平台开发仿真建模及渲染技术。通过工具收集真实地形的数据,然后进行相关的数据处理并生成数据集合。通过使用Unity3D中地形工具进行数据读取和快速制作三维场景模型,为提高模型的渲染逼真度使用高清渲染管线对场景模型进行光照等渲染处理。通过对该技术的研究,该技术能够使三维场景的逼真度提高及渲染程度非常好,模型细节也能观察,同时该技术也能被运用到毁伤评估仿真、虚拟训练等方面。 展开更多
关键词 虚拟现实 虚拟仿真建模 渲染 逼真度 三维模型
下载PDF
基于余弦相似度列置换的Q矩阵修正方法
16
作者 汪文义 许依纯 宋丽红 《江西师范大学学报(自然科学版)》 CAS 北大核心 2024年第2期116-130,共15页
国内外研究者已开发出多种有效的Q矩阵修正方法,但当Q矩阵错误率较高时,仍存在修正效果不佳的问题.该文将基于塔克一致性系数和余弦相似度的列置换方法融入4种Q矩阵修正方法(GDI、Hull、MLR-B和stepwise)中,并借助Q矩阵向量和元素正确... 国内外研究者已开发出多种有效的Q矩阵修正方法,但当Q矩阵错误率较高时,仍存在修正效果不佳的问题.该文将基于塔克一致性系数和余弦相似度的列置换方法融入4种Q矩阵修正方法(GDI、Hull、MLR-B和stepwise)中,并借助Q矩阵向量和元素正确率等指标来评价新方法的修正效果.蒙特卡罗(Monte Carlo)模拟研究结果表明:在各种条件组合下,4种Q矩阵修正方法经过列置换后的修正效果得到明显提升,特别是当Q矩阵错误率较高时效果更加显著. 展开更多
关键词 Q矩阵修正 余弦相似度 列置换 正确率
下载PDF
基于新混合乌鸦搜索算法的置换流水车间调度
17
作者 闫红超 汤伟 姚斌 《计算机集成制造系统》 EI CSCD 北大核心 2024年第5期1834-1846,共13页
为了更加有效地求解以最大完工时间最小化为目标的置换流水车间调度问题,提出一种新混合乌鸦搜索算法(NHCSA)。首先,对一种基于NEH的启发式算法进行了改进,在此基础上提出新的方法以改善初始种群的质量和多样性;其次,采用SPV(Smallest-P... 为了更加有效地求解以最大完工时间最小化为目标的置换流水车间调度问题,提出一种新混合乌鸦搜索算法(NHCSA)。首先,对一种基于NEH的启发式算法进行了改进,在此基础上提出新的方法以改善初始种群的质量和多样性;其次,采用SPV(Smallest-Position-Value)规则进行编码,使算法能够处理离散的调度问题;最后,针对迭代贪婪算法,提出了自动调整重插入工件范围的方法、引入了TB机制,并采用改进的迭代贪婪算法对最佳工件排序进行局部搜索,以提升算法收敛的精度。基于典型测试集进行了仿真测试,结果验证了所提算法的寻优能力和稳定性。尤其是在针对Rec19和Rec25算例的比较中,仅NHCSA取得了当前最优解,进一步证明了其优越性。 展开更多
关键词 乌鸦搜索算法 置换流水车间 种群初始化 局部搜索
下载PDF
利用纠缠交换制备原子-原子最大纠缠态
18
作者 张蕾 王宏伟 +3 位作者 郝丹辉 杨洁 李育康 冉锐明 《原子与分子物理学报》 北大核心 2024年第3期123-126,共4页
基于腔量子电动力学(QED)提出一种利用两对纠缠的级联型三能级原子与单模腔场系统制备原子-原子最大纠缠态的简单方案,最初两原子之间、两腔场之间互不纠缠,使其中一个原子与一个腔场发生作用,即纠缠交换,该过程仅需对单个腔场态测量就... 基于腔量子电动力学(QED)提出一种利用两对纠缠的级联型三能级原子与单模腔场系统制备原子-原子最大纠缠态的简单方案,最初两原子之间、两腔场之间互不纠缠,使其中一个原子与一个腔场发生作用,即纠缠交换,该过程仅需对单个腔场态测量就可实现从未有直接作用的两个原子之间的纠缠,精确控制原子与腔场的相互作用时间可获得具有最大保真度的纠缠态.该方案可以延长腔的有效泄漏时间,从而能有效克服光腔的消相干的影响,这样大大降低了系统对腔的品质的要求. 展开更多
关键词 量子光学 量子纠缠 腔QED 纠缠交换 保真度
下载PDF
基于PE-HMM的渡槽结构运行状态评价
19
作者 张翌娜 李紫瑜 +1 位作者 张建伟 黄锦林 《水电能源科学》 北大核心 2024年第10期140-143,157,共5页
随着远距离、高流量、大跨度渡槽工程的不断发展,渡槽运行状态监测与评价日益重要。以广东省罗定市长岗坡渡槽工程为例,基于渡槽泄流振动位移数据,提出一种基于排列熵算法(PE)和隐马尔可夫模型(HMM)的渡槽运行状态评价方法。首先,运用... 随着远距离、高流量、大跨度渡槽工程的不断发展,渡槽运行状态监测与评价日益重要。以广东省罗定市长岗坡渡槽工程为例,基于渡槽泄流振动位移数据,提出一种基于排列熵算法(PE)和隐马尔可夫模型(HMM)的渡槽运行状态评价方法。首先,运用排列熵算法和K-means法提取振动位移数据基本特征,形成HMM模型的观测状态序列。其次,运用HMM算法训练模型参数,以平均误差百分比为指标,筛选出最佳模型参数,并以该参数为初值再次训练得到渡槽运行期隐状态的概率分布。最后,结合渡槽运行期隐状态对应的分值等级及概率值,求得渡槽运行状态期望值,从而量化评价渡槽运行状态。结果表明,基于PE-HMM法的渡槽运行状态评价结果与实地勘察结论一致,可见PE-HMM法能够从渡槽振动位移数据角度出发,真实反映渡槽结构运行状态,具有较高的评判精度与工程指导意义。 展开更多
关键词 渡槽 运行状态评价 排列熵算法 隐马尔可夫模型
下载PDF
基于小波散射变换和MFCC的双特征语音情感识别融合算法
20
作者 应娜 吴顺朋 +1 位作者 杨萌 邹雨鉴 《电信科学》 北大核心 2024年第5期62-72,共11页
为了充分挖掘语音信号频谱包含的情感信息以提高语音情感识别的准确性,提出了一种基于小波散射变换和梅尔频率倒谱系数(Mel-frequency cepstral coefficient,MFCC)的排列熵加权和偏差调整规则的语音情感识别融合算法(PEW-BAR)。算法首... 为了充分挖掘语音信号频谱包含的情感信息以提高语音情感识别的准确性,提出了一种基于小波散射变换和梅尔频率倒谱系数(Mel-frequency cepstral coefficient,MFCC)的排列熵加权和偏差调整规则的语音情感识别融合算法(PEW-BAR)。算法首先获取语音信号的小波散射特征和梅尔频率倒谱系数的相关特征;然后按尺度维度扩展小波散射特征,利用支持向量机得到情感识别的后验概率并获得排列熵,并使用排列熵对后验概率进行加权;最后采用一种偏差调整规则进一步融合MFCC的相关特征的识别结果。实验结果表明,在EMODB、RAVDESS和eNTERFACE05数据集上,与传统的基于小波散射系数的语音情感识别方法相比,该算法将ACC分别提高了2.82%、2.85%和5.92%,将UAR分别提升了3.40%、2.87%和5.80%,IEMOCAP上提高了6.89%。 展开更多
关键词 语音情感识别 小波散射变换 排列熵 MFCC 模型融合
下载PDF
上一页 1 2 234 下一页 到第
使用帮助 返回顶部