期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
SOME FURTHER NOTES ON THE MATRIX EQUATIONS A^TXB+B^TX^TA=C AND A^TXB+B^TXA=C 被引量:2
1
作者 G.SOARES 《Acta Mathematica Scientia》 SCIE CSCD 2015年第1期275-280,共6页
Dehghan and Hajarian, [4], investigated the matrix equations A^TXB+B^TX^TA = C and A^TXB + B^TXA = C providing inequalities for the determinant of the solutions of these equations. In the same paper, the authors pre... Dehghan and Hajarian, [4], investigated the matrix equations A^TXB+B^TX^TA = C and A^TXB + B^TXA = C providing inequalities for the determinant of the solutions of these equations. In the same paper, the authors presented a lower bound for the product of the eigenvalues of the solutions to these matrix equations. Inspired by their work, we give some generalizations of Dehghan and Hajarian results. Using the theory of the numerical ranges, we present an inequality involving the trace of C when A, B, X are normal matrices satisfying A^T B = BA^T. 展开更多
关键词 matrix equation EIGENVALUE trace permutation matrix
下载PDF
Linear Error Equation on Field F_2 被引量:3
2
作者 XIA Jian-guo 《Chinese Quarterly Journal of Mathematics》 CSCD 北大核心 2007年第4期518-522,共5页
In this paper, we will give a method to solve linear error equationon on F2, by using linear algebra on fields F2 and partition theory.
关键词 error equation permutation matrix hamming weight
下载PDF
Quantum quasi-cyclic low-density parity-check error-correcting codes 被引量:1
3
作者 李渊 曾贵华 Moon Ho Leeb 《Chinese Physics B》 SCIE EI CAS CSCD 2009年第10期4154-4160,共7页
In this paper, we propose the approach of employing circulant permutation matrices to construct quantum quasicyclic (QC) low-density parity-check (LDPC) codes. Using the proposed approach one may construct some ne... In this paper, we propose the approach of employing circulant permutation matrices to construct quantum quasicyclic (QC) low-density parity-check (LDPC) codes. Using the proposed approach one may construct some new quantum codes with various lengths and rates of no cycles-length 4 in their Tanner graphs. In addition, these constructed codes have the advantages of simple implementation and low-complexity encoding. Finally, the decoding approach for the proposed quantum QC LDPC is investigated. 展开更多
关键词 quantum LDPC code quasi-cycliC circulant permutation matrix CSS code
下载PDF
A System of Matrix Equations over the Quaternion Algebra with Applications 被引量:1
4
作者 Xiangrong Nie Qingwen Wang Yang Zhang 《Algebra Colloquium》 SCIE CSCD 2017年第2期233-253,共21页
We in this paper give necessary and sufficient conditions for the existence of the general solution to the system of matrix equations A1X1 = C1, AXiB1 + X2B2 = C3, A2X2 + A3X3B= C2 and X3B3 = C4 over the quaternion ... We in this paper give necessary and sufficient conditions for the existence of the general solution to the system of matrix equations A1X1 = C1, AXiB1 + X2B2 = C3, A2X2 + A3X3B= C2 and X3B3 = C4 over the quaternion algebra H, and present an expression of the general solution to this system when it is solvable. Using the results, we give some necessary and sufficient conditions for the system of matrix equations AX = C, XB = C over H to have a reducible solution as well as the representation of such solution to the system when the consistency conditions are met. A numerical example is also given to illustrate our results. As another application, we give the necessary and sufficient conditions for two associated electronic networks to have the same branch current and branch voltage and give the expressions of the same branch current and branch voltage when the conditions are satisfied. 展开更多
关键词 quaternion algebra matrix equation permutation matrix reducible matrix
原文传递
Generalized Latin Matrix and Construction of Orthogonal Arrays
5
作者 Shan-qi PANG Li-yan CHEN 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2017年第4期1083-1092,共10页
In this paper, generalized Latin matrix and orthogonal generalized Latin matrices are proposed. By using the property of orthogonal array, some methods for checking orthogonal generalized Latin matrices are presented.... In this paper, generalized Latin matrix and orthogonal generalized Latin matrices are proposed. By using the property of orthogonal array, some methods for checking orthogonal generalized Latin matrices are presented. We study the relation between orthogonal array and orthogonal generalized Latin matrices and obtain some useful theorems for their construction. An example is given to illustrate applications of main theorems and a new class of mixed orthogonal arrays are obtained. 展开更多
关键词 orthogonal array generalized Latin matrix orthogonal generalized Latin matrices matrix image generalized permutation difference matrix
原文传递
Some Conditions for Matrices over an Incline To Be Invertible and General Linear Group on an Incline 被引量:1
6
作者 Song Chol HAN Hong Xing LI 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2005年第5期1093-1098,共6页
Inclines are the additively idempotent semirings in which products are less than or equal to either factor. In this paper, some necessary and sufficient conditions for a matrix over L to be invertible are given, where... Inclines are the additively idempotent semirings in which products are less than or equal to either factor. In this paper, some necessary and sufficient conditions for a matrix over L to be invertible are given, where L is an incline with 0 and 1. Also it is proved that L is an integral incline if and only if GLn(L) = PLn (L) for any n (n 〉 2), in which GLn(L) is the group of all n × n invertible matrices over L and PLn(L) is the group of all n × n permutation matrices over L. These results should be regarded as the generalizations and developments of the previous results on the invertible matrices over a distributive lattice. 展开更多
关键词 INCLINE Distributive lattice Invertible matrix permutation matrix Linear group
原文传递
Past review,current progress,and challenges ahead on the cocktail party problem 被引量:3
7
作者 Yan-min QIAN Chao WENG +2 位作者 Xuan-kai CHANG Shuai WANG Dong YU 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2018年第1期40-63,共24页
The cocktail party problem,i.e.,tracing and recognizing the speech of a specific speaker when multiple speakers talk simultaneously,is one of the critical problems yet to be solved to enable the wide application of au... The cocktail party problem,i.e.,tracing and recognizing the speech of a specific speaker when multiple speakers talk simultaneously,is one of the critical problems yet to be solved to enable the wide application of automatic speech recognition(ASR) systems.In this overview paper,we review the techniques proposed in the last two decades in attacking this problem.We focus our discussions on the speech separation problem given its central role in the cocktail party environment,and describe the conventional single-channel techniques such as computational auditory scene analysis(CASA),non-negative matrix factorization(NMF) and generative models,the conventional multi-channel techniques such as beamforming and multi-channel blind source separation,and the newly developed deep learning-based techniques,such as deep clustering(DPCL),the deep attractor network(DANet),and permutation invariant training(PIT).We also present techniques developed to improve ASR accuracy and speaker identification in the cocktail party environment.We argue effectively exploiting information in the microphone array,the acoustic training set,and the language itself using a more powerful model.Better optimization ob jective and techniques will be the approach to solving the cocktail party problem. 展开更多
关键词 Cocktail party problem Computational auditory scene analysis Non-negative matrix factorization permutation invariant training Multi-talker speech processing
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部