In this paper, the magnetocaloric in La0.5Sm0.2Sr0.3Mn1-xFexO3 compounds with x = 0 (LSSMO) and x = 0.05 (LSSMFO) were simulated using mean field model theory. A strong consistency was observed between the theoretical...In this paper, the magnetocaloric in La0.5Sm0.2Sr0.3Mn1-xFexO3 compounds with x = 0 (LSSMO) and x = 0.05 (LSSMFO) were simulated using mean field model theory. A strong consistency was observed between the theoretical and experimental curves of magnetizations and magnetic entropy changes, −ΔSM(T). Based on the mean-field generated −ΔSM(T), the substantial Temperature-averaged Entropy Change (TEC) values reinforce the appropriateness of these materials for use in magnetic refrigeration technology within TEC (10) values of 1 and 0.57 J∙kg−1∙K−1under 1 T applied magnetic field.展开更多
Phase structures, the transport ana magnetic properties of the Perovskite-type manganite (La0.8-x CexSr0.2)0.97 MnO3(x = 0 - 0. 26) prepared by La2O3 containing CeO2 with different contents were studied. Experimen...Phase structures, the transport ana magnetic properties of the Perovskite-type manganite (La0.8-x CexSr0.2)0.97 MnO3(x = 0 - 0. 26) prepared by La2O3 containing CeO2 with different contents were studied. Experiments show that the compounds consist of a magnetic perovskite phase and non-magnetic CeO2 and Mn3O4. The resistivity and magnetoresistance ratio (MR) of the samples vary with changing x. Their room-temperature MR reaches -3% - - 14% at the magnetic field of 1 T. For x =0; x =0.037 and x = 0.26 samples, the conductance keeps unchanged basically in a relatively wide temperature range above 600 K, and the result shows that it is feasible for producing SOFC cathode materials with these samples.展开更多
Electrical properties and magnetoresistance have been studied in two series of xAg-La0.67(Ca0.65Ba0.35)0.33MnO3 and xPd-La0.67(Ca0.65Ba0.35)0.33MnO3 (abbreviated by xAg-LCBMO and xPd-LCBMO) composites. Both Pd a...Electrical properties and magnetoresistance have been studied in two series of xAg-La0.67(Ca0.65Ba0.35)0.33MnO3 and xPd-La0.67(Ca0.65Ba0.35)0.33MnO3 (abbreviated by xAg-LCBMO and xPd-LCBMO) composites. Both Pd and Ag addition induce a decrease in resistivity and an increase in temperature at which the resistivity reaches its maximum. This is mainly due to the improvement of grain boundaries caused by the segregation of good conductive metal grains on the grain boundaries/surfaces. In addition, both Pd and Ag addition induce a large enhancement of room temperature magnetoresistance (RTMR). Note that 27% molar ratio of Ag addition induces a large RTMR of about 70%, about ten times larger than pure LCBMO, whereas 27% molar ratio Pd addition brings a much larger RTMR of about 170%. The large enhancements of MR can be attributed to the decrease in resistivity of the samples caused by the good conductive metal. On the other hand, the polarization of Pd atoms near the Mn ions on the grain surfaces/boundaries plays a very im-portant role in the increase in MR, which induces a large number of spin clusters in Pd-added samples.展开更多
Owing to the inhomogeneous state resulting from the doping of a small number of Eu ions into Laa/3Sr5/3Mn2O7, from the resulting single crystal (La0.8Eu0.2)a/3Sr5/3Mn2O7 we have observed the magnetization jump, the ...Owing to the inhomogeneous state resulting from the doping of a small number of Eu ions into Laa/3Sr5/3Mn2O7, from the resulting single crystal (La0.8Eu0.2)a/3Sr5/3Mn2O7 we have observed the magnetization jump, the resistivity jump, as well as the relaxation phenomena. For (Lao.sEuo.2)a/3Sr5/3Mn2O7, it has a very delicate ground state due to the interplays among spin, charge, orbital, lattice degrees of freedom. Consequently, the magnetization state is sensitive to temperature, magnetic field, as well as time. Meanwhile, the evolution of the magnetization with time shows a spontaneous jump when both the temperature and the magnetic field are constant. Similar step-like behaviours are also observed in resistivity. All these results suggest that Eu doping can greatly modulate the physical properties of Laa/3Sr5/3Mn2O7 and cause such interesting behaviours.展开更多
We have performed magnetization measurements and electron spin resonance (ESR) on polycrystalline manganites of Nd0.5Sr0.5-xBaxMnO3 (x = 0.1). Phase separation and phase transitions are observed from the susceptib...We have performed magnetization measurements and electron spin resonance (ESR) on polycrystalline manganites of Nd0.5Sr0.5-xBaxMnO3 (x = 0.1). Phase separation and phase transitions are observed from the susceptibility and the ESR spectra data. Between 260 K (~ Tc) and 185 K (~ TN), the system coexists of the paramagnetic phase and the ferromagnetic (FM) phase. Between 185 K and 140 K, the system coexists of the FM phase and the antiferromagnetic (AFM) phase. These results indicate that the system has a very complex magnetic state due to the origin of the instability stemming from manganite Nd0.5Sr0.4Ba0.1MnO3 by partially substituting the larger Ba^2+ ions for the smaller Sr^2+ ions.展开更多
We review colossal magnetoresistance in single phase manganites, as related to the field sensitive spin-charge interactions and phase separation; the rectifying property and negative/positive magnetoresistance in mang...We review colossal magnetoresistance in single phase manganites, as related to the field sensitive spin-charge interactions and phase separation; the rectifying property and negative/positive magnetoresistance in manganite/Nb:SrTio3 p-n junctions in relation to the special interface electronic structure; magnetoelectric coupling in manganite/ferroelectric structures that takes advantage of strain, carrier density, and magnetic field sensitivity; tunneling magnetoresistance in tunnel junctions with dielectric, ferroelectric, and organic semiconductor spacers using the fully spin polarized nature of manganites; and the effect of particle size on magnetic properties in manganite nanoparticles.展开更多
Powder samples with nominal composition La0.6Sr0.1TexMnO3 (x = 0.00, 0.05, 0.10, 0.15, 0.20) were prepared using the sol-gel method with thermal treatment up to 1473 K. On the basis of powder X-ray diffraction (XRD...Powder samples with nominal composition La0.6Sr0.1TexMnO3 (x = 0.00, 0.05, 0.10, 0.15, 0.20) were prepared using the sol-gel method with thermal treatment up to 1473 K. On the basis of powder X-ray diffraction (XRD), thermogravimetric and magnetic measurements, it was found that almost all of the Te and a few of the Mn ions were lost from the samples when they were calcined at 1473 K. The reason for the Te loss and a quantitative phase analysis for the samples calcined at 1473 K are discussed in detail.展开更多
It is becoming increasingly clear that the exotic properties displayed by correlated electronic materials such as high- Tc superconductivity in cuprates, colossal magnetoresistance (CMR) in manganites, and heavy-fer...It is becoming increasingly clear that the exotic properties displayed by correlated electronic materials such as high- Tc superconductivity in cuprates, colossal magnetoresistance (CMR) in manganites, and heavy-fermion compounds are intimately related to the coexistence of competing nearly degenerate states which couple simultaneously active degrees of freedom---charge, lattice, orbital, and spin states. The striking phenomena associated with these materials are due in a large part to spatial electronic inhomogeneities, or electronic phase separation (EPS). In many of these hard materials, the functionality is a result of the soft electronic component that leads to self-organization. In this paper, we review our recent work on a novel spatial confinement technique that has led to some fascinating new discoveries about the role of EPS in manganites. Using lithographic techniques to confine manganite thin films to length scales of the EPS domains that reside within them, it is possible to simultaneously probe EPS domains with different electronic states. This method allows for a much more complete view of the phases residing in a material and gives vital information on phase formation, movement, and fluctuation. Pushing this trend to its limit, we propose to control the formation process of the EPS using external local fields, which include magnetic exchange field, strain field, and electric field. We term the ability to pattern EPS "electronic nanofabrication." This method allows us to control the global physical properties of the system at a very fundamental level, and greatly enhances the potential for realizing true oxide electronics.展开更多
In the present paper, we continue our investigation on the antiferromagneticorigin of the charge order observed in the halt-doped manganese. By introducing aSu-Schrieffer-Heeger (SSH) type of perturbation interaction ...In the present paper, we continue our investigation on the antiferromagneticorigin of the charge order observed in the halt-doped manganese. By introducing aSu-Schrieffer-Heeger (SSH) type of perturbation interaction to the double-exchange Hamiltonian, wecalculate again its ground-state phase diagram at Glling x = 0.5 by the unrestricted real-spaceHartree-Fock approximation method. We find that, as the SSH electron-phonon interaction increases,the charge order parameter decreases to zero rapidly but the CE-type antiferromagnetic order becomesmore stable. In other words, the charge order is much more fragile than the CE-type or theNeel-type antiferromagnetic orders under the electron-phonon perturbation. These results support theproposed theory in the recent publications that the charge order in these systems is induced by theantiferromagnetic correlations.展开更多
Manganites are very complex systems because of interplay among charge, spin, orbital and lattice degrees of freedom. To come closer to the understanding of its nature, we discuss its three important features: 1) corre...Manganites are very complex systems because of interplay among charge, spin, orbital and lattice degrees of freedom. To come closer to the understanding of its nature, we discuss its three important features: 1) correlation between magnetization and electrical resistivity in the same temperature range;2) detection of chemical constitution and the arrangement of Mn3+ and Mn4+ ions at different hole concentrations;and 3) how electrical current flows through double exchange in manganites. The first feature will be discussed for three-dimensional manganies. The features 2 and 3 are inscrutable in three-dimensional manganites. So they will be discussed for one-dimensional manganites and then generalized. One-dimensional solid has been discussed because it may give a see-through picture of various aspects of manganites. All the discussions will be done through a representative example of La1-xCaxMnO3, because it is the intermediate bandwidth manganite;has been most widely investigated and has the highest magnetoresistance. If two things: 1) magnetization and resistivity as a function of temperature at various magnetic fields;and 2) phase diagrams of other manganites are known, their properties can be understood by the discussion of the three features mentioned above.展开更多
Thermal-annealing has been widely used in modulating the oxygen content of manganites. In this work, we have studied the effect of annealing on the transport properties and magnetoresistance of junctions composed of a...Thermal-annealing has been widely used in modulating the oxygen content of manganites. In this work, we have studied the effect of annealing on the transport properties and magnetoresistance of junctions composed of a La0.9Ca0.1MnO3+6 film and a Nb-doped SrTiO3 substrate. We have demonstrated that the magnetoresistance of junctions is strongly dependent on the annealing conditions: Prom the junction annealed-in-air to the junction annealedin-vacuum, the magnetoresistance near 0-V bias can vary from ~-60% to N~0. A possible mechanism accounting for this phenomenon is discussed.展开更多
Interracial barrier is a key factor that determines the performances of heterojunctions. In this work, we study the effect of manganite film thickness on the effective interracial barrier for La0.67Sr0.33MnO3/Nb:SrTi...Interracial barrier is a key factor that determines the performances of heterojunctions. In this work, we study the effect of manganite film thickness on the effective interracial barrier for La0.67Sr0.33MnO3/Nb:SrTiO3 junctions, The barrier is extracted from the forward current-voltage characteristics. Our results demonstrate that the barrier decreases gradually from -0.85 eV to -0.60 eV when the film thickness decreases from 150 nm to 2 nm. The overall value of the barrier is only about 50% of the corresponding one determined from the photovoltaic effect.展开更多
An oxide p-n heterojunction composed of a 150-nm La0.67Ca0.33 MnO3(LCMO) film, 0.05 wt% Nb doped SrTiO3 substrate(STON), and sandwiched 5-nm LaAlO3(LAO) thin film is fabricated with the pulsed laser deposition t...An oxide p-n heterojunction composed of a 150-nm La0.67Ca0.33 MnO3(LCMO) film, 0.05 wt% Nb doped SrTiO3 substrate(STON), and sandwiched 5-nm LaAlO3(LAO) thin film is fabricated with the pulsed laser deposition technique and the interfacial transport properties are experimentally studied. The rectifying behavior of the junction is in agreement with Newman's equation, indicating that tunneling is the dominant process for the carriers to pass through the interface while thermal emission is the dominant transport model of an LCMO/STON heterojunction with no LAO buffer layer.展开更多
A manganite p-n heterojunction composed of Lao.67Sro.33MnO3 film and 0.05 wt% Nb-doped SrTiO3 substrate is fabricated. Rectifying behavior of the junction well described by the Shockley equation is observed, and the t...A manganite p-n heterojunction composed of Lao.67Sro.33MnO3 film and 0.05 wt% Nb-doped SrTiO3 substrate is fabricated. Rectifying behavior of the junction well described by the Shockley equation is observed, and the transport properties of the interface are experimentally studied. A satisfactorily logarithmic linear dependence of resistance on temperature is observed in a temperature range of 150 K-380 K, and the linear relation between bias and activation energies deduced from the R - lIT curves is observed. According to activation energy, the interfacial barrier of the heterojunction is obtained, which is 0.91 eV.展开更多
The electrical and magnetic properties of bilayer manganites La1.4Sr1.6Mn1.96TE0.04O7(TE = Mn, Fe, Ti, Nb) were investigated. Doping caused obvious changes in electrical and magnetic behaviors such as decrease of in...The electrical and magnetic properties of bilayer manganites La1.4Sr1.6Mn1.96TE0.04O7(TE = Mn, Fe, Ti, Nb) were investigated. Doping caused obvious changes in electrical and magnetic behaviors such as decrease of insulator-metal transition and magnetic transition temperatures, increase of peak resistivity, and different magnetoresistance effect. These changes had a significant degree of correlation with the valence of doped ions. From Fe, Ti to Nb doping, the effect was doubly stronger. The results could be well understood by considering the different destructions on double-exchange interaction and different influences on lattice distortion caused by Fe, Ti and Nb doping. The temperature dependence of magnetization measured at high field showed that the influence of doping was greatest near three-dimensional magnetic transition temperature of parent phase.展开更多
Light–matter interaction plays an important role in the non-equilibrium physics, especially in strongly correlated electron systems with complex phases. Photoinduced effect can cause the variation in the physical pro...Light–matter interaction plays an important role in the non-equilibrium physics, especially in strongly correlated electron systems with complex phases. Photoinduced effect can cause the variation in the physical properties and produce some emergent phases. As a classical archetype, manganites have received much attention due to their colossal magnetoresistance(CMR) effect and the strong interaction of charge, spin, orbital, and lattice degrees of freedom. In this paper, we give an overview of photoinduced effect in manganites and their heterostructures. In particular, some materials, including ZnO, Si,BiFeO3(BFO), titanate-based oxides, and 0.7 Pb(Mg(1/3) Nb(2/3))O3-0.3 PbTiO3(PMN-PT) have been integrated with manganites. Heterostructures composed of these materials display some exciting and intriguing properties. We do hope that this review offers a guiding idea and more meaningful physical phenomena will be discovered in active areas of solid state physics and materials science.展开更多
The temperature evolution of the crystal structure for Nd_(0.5)Sr_(0.5)MnO_3 has been investigated by powder XRD between 125 Kand 725K.The structure can be described with a monoclinic symmetry(space group P21/m)in the...The temperature evolution of the crystal structure for Nd_(0.5)Sr_(0.5)MnO_3 has been investigated by powder XRD between 125 Kand 725K.The structure can be described with a monoclinic symmetry(space group P21/m)in the temperature range of 125—175 K,while with the increase in temperature between 175 Kand 575 Kthe structure involves a higher orthorhombic symmetry(space group Imma).The rhombohedral structure with space group R-3cis observed at high temperature region of 575—725K.The increase in the magnetization at low temperatures can be ascribed to the field-induced short-range magnetic order of the Nd3+ions.The dc and ac susceptibility data show some anomalies around the FM-PM transition region which can be attributed to the glass behavior and magnetic relaxation.展开更多
Due to the upcoming demands of next-generation electronic/magnetoelectronic devices with low-energy consumption,emerging correlated materials(such as superconductors,topological insulators and manganites) are one of...Due to the upcoming demands of next-generation electronic/magnetoelectronic devices with low-energy consumption,emerging correlated materials(such as superconductors,topological insulators and manganites) are one of the highly promising candidates for the applications.For the past decades,manganites have attracted great interest due to the colossal magnetoresistance effect,charge-spin-orbital ordering,and electronic phase separation.However,the incapable of deterministic control of those emerging low-dimensional spin structures at ambient condition restrict their possible applications.Therefore,the understanding and control of the dynamic behaviors of spin order parameters at nanoscale in manganites under external stimuli with low energy consumption,especially at room temperature is highly desired.In this review,we collected recent major progresses of nanoscale control of spin structures in manganites at low dimension,especially focusing on the control of their phase boundaries,domain walls as well as the topological spin structures(e.g.,skyrmions).In addition,capacitor-based prototype spintronic devices are proposed by taking advantage of the above control methods in manganites.This capacitor-based structure may provide a new platform for the design of future spintronic devices with low-energy consumption.展开更多
A phenomenological model based on phase separation between ferromagnetic metallic and paramagnetic insulating domains was applied to analyze the electrical transport and colossal magnetoresistance for mixed-valent man...A phenomenological model based on phase separation between ferromagnetic metallic and paramagnetic insulating domains was applied to analyze the electrical transport and colossal magnetoresistance for mixed-valent manganites of RE_(2/3)AE_(1/3)MnO_3. The results show that the model can yield results in agreement with experimental observations in these manganites. The present approach provides a simple picture to visualize the reason that the temperature dependence of resistance (with and without applied magnetic fields) in these compounds has the peculiar shape, without invoking any complicated concept.展开更多
Tetragonally layered perovskite manganites of Nd2-2xSr1+2xMn2O7(x =0.25, 0.3, 0.4) were fabricated by using solid-state reaction technique. Structural characterization of the compounds was investigated by X-ray dif...Tetragonally layered perovskite manganites of Nd2-2xSr1+2xMn2O7(x =0.25, 0.3, 0.4) were fabricated by using solid-state reaction technique. Structural characterization of the compounds was investigated by X-ray diffraction (XRD) and FT-IR absorption spectra. The XRD patterns revealed that all the samples were single phase. X-ray photoemission spectroscopy (XPS) was used to investigate their electronic structures. It was found that manganese was in mixed states of Mn^3+ and Mn^4+ whereas lattice oxygen and chemical absorbed oxygen were existed in all the samples. The high temperature electrical properties of Nd2-2xSr1+2xMn2O7 (x = 0.3, 0.4) were measured by standard four-probe technique. The results showed that both compounds had semi-conductivity behavior in the temperature range of 300 - 1073 K, and the electrical conduction was dominated by thermally activated behavior above 500 K.展开更多
文摘In this paper, the magnetocaloric in La0.5Sm0.2Sr0.3Mn1-xFexO3 compounds with x = 0 (LSSMO) and x = 0.05 (LSSMFO) were simulated using mean field model theory. A strong consistency was observed between the theoretical and experimental curves of magnetizations and magnetic entropy changes, −ΔSM(T). Based on the mean-field generated −ΔSM(T), the substantial Temperature-averaged Entropy Change (TEC) values reinforce the appropriateness of these materials for use in magnetic refrigeration technology within TEC (10) values of 1 and 0.57 J∙kg−1∙K−1under 1 T applied magnetic field.
文摘Phase structures, the transport ana magnetic properties of the Perovskite-type manganite (La0.8-x CexSr0.2)0.97 MnO3(x = 0 - 0. 26) prepared by La2O3 containing CeO2 with different contents were studied. Experiments show that the compounds consist of a magnetic perovskite phase and non-magnetic CeO2 and Mn3O4. The resistivity and magnetoresistance ratio (MR) of the samples vary with changing x. Their room-temperature MR reaches -3% - - 14% at the magnetic field of 1 T. For x =0; x =0.037 and x = 0.26 samples, the conductance keeps unchanged basically in a relatively wide temperature range above 600 K, and the result shows that it is feasible for producing SOFC cathode materials with these samples.
文摘Electrical properties and magnetoresistance have been studied in two series of xAg-La0.67(Ca0.65Ba0.35)0.33MnO3 and xPd-La0.67(Ca0.65Ba0.35)0.33MnO3 (abbreviated by xAg-LCBMO and xPd-LCBMO) composites. Both Pd and Ag addition induce a decrease in resistivity and an increase in temperature at which the resistivity reaches its maximum. This is mainly due to the improvement of grain boundaries caused by the segregation of good conductive metal grains on the grain boundaries/surfaces. In addition, both Pd and Ag addition induce a large enhancement of room temperature magnetoresistance (RTMR). Note that 27% molar ratio of Ag addition induces a large RTMR of about 70%, about ten times larger than pure LCBMO, whereas 27% molar ratio Pd addition brings a much larger RTMR of about 170%. The large enhancements of MR can be attributed to the decrease in resistivity of the samples caused by the good conductive metal. On the other hand, the polarization of Pd atoms near the Mn ions on the grain surfaces/boundaries plays a very im-portant role in the increase in MR, which induces a large number of spin clusters in Pd-added samples.
基金supported by the National Natural Science Foundation of China (Grant No 50672126)the Inner Mongolia Natural Science Foundation,China (Grant No 200607010102)
文摘Owing to the inhomogeneous state resulting from the doping of a small number of Eu ions into Laa/3Sr5/3Mn2O7, from the resulting single crystal (La0.8Eu0.2)a/3Sr5/3Mn2O7 we have observed the magnetization jump, the resistivity jump, as well as the relaxation phenomena. For (Lao.sEuo.2)a/3Sr5/3Mn2O7, it has a very delicate ground state due to the interplays among spin, charge, orbital, lattice degrees of freedom. Consequently, the magnetization state is sensitive to temperature, magnetic field, as well as time. Meanwhile, the evolution of the magnetization with time shows a spontaneous jump when both the temperature and the magnetic field are constant. Similar step-like behaviours are also observed in resistivity. All these results suggest that Eu doping can greatly modulate the physical properties of Laa/3Sr5/3Mn2O7 and cause such interesting behaviours.
基金supported by the National Natural Science Foundation of China (Grant No 50672126)the Inner Mongolia Natural Science Foundation of China (Grant No 200607010102)
文摘We have performed magnetization measurements and electron spin resonance (ESR) on polycrystalline manganites of Nd0.5Sr0.5-xBaxMnO3 (x = 0.1). Phase separation and phase transitions are observed from the susceptibility and the ESR spectra data. Between 260 K (~ Tc) and 185 K (~ TN), the system coexists of the paramagnetic phase and the ferromagnetic (FM) phase. Between 185 K and 140 K, the system coexists of the FM phase and the antiferromagnetic (AFM) phase. These results indicate that the system has a very complex magnetic state due to the origin of the instability stemming from manganite Nd0.5Sr0.4Ba0.1MnO3 by partially substituting the larger Ba^2+ ions for the smaller Sr^2+ ions.
基金supported by the National Natural Science Foundation of Chinathe National Basic Research Program of China(Grant Nos.2012CB922003,2011CBA00102,and 2009CB929502)
文摘We review colossal magnetoresistance in single phase manganites, as related to the field sensitive spin-charge interactions and phase separation; the rectifying property and negative/positive magnetoresistance in manganite/Nb:SrTio3 p-n junctions in relation to the special interface electronic structure; magnetoelectric coupling in manganite/ferroelectric structures that takes advantage of strain, carrier density, and magnetic field sensitivity; tunneling magnetoresistance in tunnel junctions with dielectric, ferroelectric, and organic semiconductor spacers using the fully spin polarized nature of manganites; and the effect of particle size on magnetic properties in manganite nanoparticles.
基金supported by the Natural Science Foundation of Hebei Province (No. E2011205083)the Key Item Science Foundation of Hebei Province, China (No.10965125D+3 种基金 No.08965108D)the National Natural Science Foundation of China (No.NSF-10774037No.10074013)the National High Technology Research and Development Program of China (No. 2007AA03Z100)
文摘Powder samples with nominal composition La0.6Sr0.1TexMnO3 (x = 0.00, 0.05, 0.10, 0.15, 0.20) were prepared using the sol-gel method with thermal treatment up to 1473 K. On the basis of powder X-ray diffraction (XRD), thermogravimetric and magnetic measurements, it was found that almost all of the Te and a few of the Mn ions were lost from the samples when they were calcined at 1473 K. The reason for the Te loss and a quantitative phase analysis for the samples calcined at 1473 K are discussed in detail.
基金Project supported by the National Basic Research Program of China(Grant No.2011CB921801)the National Natural Science Foundation of China(Grant Nos.91121002and11274071)+1 种基金US DOE Office of Basic Energy Sciences,Scientific User Facilities Division,and the US DOE grant DE-SC0002136the US DOE Office of Basic Energy Sciences,Materials Sciences and Engineering Division,through the Oak Ridge National Laboratory
文摘It is becoming increasingly clear that the exotic properties displayed by correlated electronic materials such as high- Tc superconductivity in cuprates, colossal magnetoresistance (CMR) in manganites, and heavy-fermion compounds are intimately related to the coexistence of competing nearly degenerate states which couple simultaneously active degrees of freedom---charge, lattice, orbital, and spin states. The striking phenomena associated with these materials are due in a large part to spatial electronic inhomogeneities, or electronic phase separation (EPS). In many of these hard materials, the functionality is a result of the soft electronic component that leads to self-organization. In this paper, we review our recent work on a novel spatial confinement technique that has led to some fascinating new discoveries about the role of EPS in manganites. Using lithographic techniques to confine manganite thin films to length scales of the EPS domains that reside within them, it is possible to simultaneously probe EPS domains with different electronic states. This method allows for a much more complete view of the phases residing in a material and gives vital information on phase formation, movement, and fluctuation. Pushing this trend to its limit, we propose to control the formation process of the EPS using external local fields, which include magnetic exchange field, strain field, and electric field. We term the ability to pattern EPS "electronic nanofabrication." This method allows us to control the global physical properties of the system at a very fundamental level, and greatly enhances the potential for realizing true oxide electronics.
文摘In the present paper, we continue our investigation on the antiferromagneticorigin of the charge order observed in the halt-doped manganese. By introducing aSu-Schrieffer-Heeger (SSH) type of perturbation interaction to the double-exchange Hamiltonian, wecalculate again its ground-state phase diagram at Glling x = 0.5 by the unrestricted real-spaceHartree-Fock approximation method. We find that, as the SSH electron-phonon interaction increases,the charge order parameter decreases to zero rapidly but the CE-type antiferromagnetic order becomesmore stable. In other words, the charge order is much more fragile than the CE-type or theNeel-type antiferromagnetic orders under the electron-phonon perturbation. These results support theproposed theory in the recent publications that the charge order in these systems is induced by theantiferromagnetic correlations.
文摘Manganites are very complex systems because of interplay among charge, spin, orbital and lattice degrees of freedom. To come closer to the understanding of its nature, we discuss its three important features: 1) correlation between magnetization and electrical resistivity in the same temperature range;2) detection of chemical constitution and the arrangement of Mn3+ and Mn4+ ions at different hole concentrations;and 3) how electrical current flows through double exchange in manganites. The first feature will be discussed for three-dimensional manganies. The features 2 and 3 are inscrutable in three-dimensional manganites. So they will be discussed for one-dimensional manganites and then generalized. One-dimensional solid has been discussed because it may give a see-through picture of various aspects of manganites. All the discussions will be done through a representative example of La1-xCaxMnO3, because it is the intermediate bandwidth manganite;has been most widely investigated and has the highest magnetoresistance. If two things: 1) magnetization and resistivity as a function of temperature at various magnetic fields;and 2) phase diagrams of other manganites are known, their properties can be understood by the discussion of the three features mentioned above.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10474133 and 10674169)the National Fundamental Research of China (Grant No 2007CB925002)
文摘Thermal-annealing has been widely used in modulating the oxygen content of manganites. In this work, we have studied the effect of annealing on the transport properties and magnetoresistance of junctions composed of a La0.9Ca0.1MnO3+6 film and a Nb-doped SrTiO3 substrate. We have demonstrated that the magnetoresistance of junctions is strongly dependent on the annealing conditions: Prom the junction annealed-in-air to the junction annealedin-vacuum, the magnetoresistance near 0-V bias can vary from ~-60% to N~0. A possible mechanism accounting for this phenomenon is discussed.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 10804094,50832007,50721001 and 50821001)the Natural Science Foundation of Hebei Province,China (Grant No. A2009000339)
文摘Interracial barrier is a key factor that determines the performances of heterojunctions. In this work, we study the effect of manganite film thickness on the effective interracial barrier for La0.67Sr0.33MnO3/Nb:SrTiO3 junctions, The barrier is extracted from the forward current-voltage characteristics. Our results demonstrate that the barrier decreases gradually from -0.85 eV to -0.60 eV when the film thickness decreases from 150 nm to 2 nm. The overall value of the barrier is only about 50% of the corresponding one determined from the photovoltaic effect.
基金Project supported by the National Natural Science Foundation of China(Grant No.10804089)
文摘An oxide p-n heterojunction composed of a 150-nm La0.67Ca0.33 MnO3(LCMO) film, 0.05 wt% Nb doped SrTiO3 substrate(STON), and sandwiched 5-nm LaAlO3(LAO) thin film is fabricated with the pulsed laser deposition technique and the interfacial transport properties are experimentally studied. The rectifying behavior of the junction is in agreement with Newman's equation, indicating that tunneling is the dominant process for the carriers to pass through the interface while thermal emission is the dominant transport model of an LCMO/STON heterojunction with no LAO buffer layer.
基金Project supported by the National Natural Science Foundation of China(Grant No.10804089)
文摘A manganite p-n heterojunction composed of Lao.67Sro.33MnO3 film and 0.05 wt% Nb-doped SrTiO3 substrate is fabricated. Rectifying behavior of the junction well described by the Shockley equation is observed, and the transport properties of the interface are experimentally studied. A satisfactorily logarithmic linear dependence of resistance on temperature is observed in a temperature range of 150 K-380 K, and the linear relation between bias and activation energies deduced from the R - lIT curves is observed. According to activation energy, the interfacial barrier of the heterojunction is obtained, which is 0.91 eV.
基金Project supported by the National "973" Project (2006CB921606 )National Natural Science Foundation of China(10574049)Foundation from the Ministry of the National Education (20060487011)
文摘The electrical and magnetic properties of bilayer manganites La1.4Sr1.6Mn1.96TE0.04O7(TE = Mn, Fe, Ti, Nb) were investigated. Doping caused obvious changes in electrical and magnetic behaviors such as decrease of insulator-metal transition and magnetic transition temperatures, increase of peak resistivity, and different magnetoresistance effect. These changes had a significant degree of correlation with the valence of doped ions. From Fe, Ti to Nb doping, the effect was doubly stronger. The results could be well understood by considering the different destructions on double-exchange interaction and different influences on lattice distortion caused by Fe, Ti and Nb doping. The temperature dependence of magnetization measured at high field showed that the influence of doping was greatest near three-dimensional magnetic transition temperature of parent phase.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.51572222,50702046,51172183,and 11604265)
文摘Light–matter interaction plays an important role in the non-equilibrium physics, especially in strongly correlated electron systems with complex phases. Photoinduced effect can cause the variation in the physical properties and produce some emergent phases. As a classical archetype, manganites have received much attention due to their colossal magnetoresistance(CMR) effect and the strong interaction of charge, spin, orbital, and lattice degrees of freedom. In this paper, we give an overview of photoinduced effect in manganites and their heterostructures. In particular, some materials, including ZnO, Si,BiFeO3(BFO), titanate-based oxides, and 0.7 Pb(Mg(1/3) Nb(2/3))O3-0.3 PbTiO3(PMN-PT) have been integrated with manganites. Heterostructures composed of these materials display some exciting and intriguing properties. We do hope that this review offers a guiding idea and more meaningful physical phenomena will be discovered in active areas of solid state physics and materials science.
基金supported by the Jiangsu Provincial Natural Science Foundation(No.BK20141411)
文摘The temperature evolution of the crystal structure for Nd_(0.5)Sr_(0.5)MnO_3 has been investigated by powder XRD between 125 Kand 725K.The structure can be described with a monoclinic symmetry(space group P21/m)in the temperature range of 125—175 K,while with the increase in temperature between 175 Kand 575 Kthe structure involves a higher orthorhombic symmetry(space group Imma).The rhombohedral structure with space group R-3cis observed at high temperature region of 575—725K.The increase in the magnetization at low temperatures can be ascribed to the field-induced short-range magnetic order of the Nd3+ions.The dc and ac susceptibility data show some anomalies around the FM-PM transition region which can be attributed to the glass behavior and magnetic relaxation.
基金Project supported by the National Basic Research Program of China(Grant No.2014CB920902)the National Natural Science Foundation of China(Grant Nos.61306105 and 51572278)+1 种基金the Information Science and Technology(TNList)Cross-discipline Foundation from Tsinghua National Laboratory,Chinathe Fund from the State Key Laboratory of Electronic Thin Films and Integrated Devices,University of Electronic Science and Technology of China,Chengdu 610054,China
文摘Due to the upcoming demands of next-generation electronic/magnetoelectronic devices with low-energy consumption,emerging correlated materials(such as superconductors,topological insulators and manganites) are one of the highly promising candidates for the applications.For the past decades,manganites have attracted great interest due to the colossal magnetoresistance effect,charge-spin-orbital ordering,and electronic phase separation.However,the incapable of deterministic control of those emerging low-dimensional spin structures at ambient condition restrict their possible applications.Therefore,the understanding and control of the dynamic behaviors of spin order parameters at nanoscale in manganites under external stimuli with low energy consumption,especially at room temperature is highly desired.In this review,we collected recent major progresses of nanoscale control of spin structures in manganites at low dimension,especially focusing on the control of their phase boundaries,domain walls as well as the topological spin structures(e.g.,skyrmions).In addition,capacitor-based prototype spintronic devices are proposed by taking advantage of the above control methods in manganites.This capacitor-based structure may provide a new platform for the design of future spintronic devices with low-energy consumption.
文摘A phenomenological model based on phase separation between ferromagnetic metallic and paramagnetic insulating domains was applied to analyze the electrical transport and colossal magnetoresistance for mixed-valent manganites of RE_(2/3)AE_(1/3)MnO_3. The results show that the model can yield results in agreement with experimental observations in these manganites. The present approach provides a simple picture to visualize the reason that the temperature dependence of resistance (with and without applied magnetic fields) in these compounds has the peculiar shape, without invoking any complicated concept.
基金Project supported by the National Natural Science Foundation of China (20571019)the Project sponsored by the Scientific Research Foundation for the Returned Overseas Chinese Scholars, Hei Long Jiang ( LC06C13)Project sponsored by Program of Harbin Subject Chief Scientists (2006RFXXG001)
文摘Tetragonally layered perovskite manganites of Nd2-2xSr1+2xMn2O7(x =0.25, 0.3, 0.4) were fabricated by using solid-state reaction technique. Structural characterization of the compounds was investigated by X-ray diffraction (XRD) and FT-IR absorption spectra. The XRD patterns revealed that all the samples were single phase. X-ray photoemission spectroscopy (XPS) was used to investigate their electronic structures. It was found that manganese was in mixed states of Mn^3+ and Mn^4+ whereas lattice oxygen and chemical absorbed oxygen were existed in all the samples. The high temperature electrical properties of Nd2-2xSr1+2xMn2O7 (x = 0.3, 0.4) were measured by standard four-probe technique. The results showed that both compounds had semi-conductivity behavior in the temperature range of 300 - 1073 K, and the electrical conduction was dominated by thermally activated behavior above 500 K.