Nonalcoholic fatty liver disease (NAFLD) is highly prevalent and can result in nonalcoholic steatohepatitis (NASH) and progressive liver disease including cirrhosis and hepatocellular carcinoma. A growing body of ...Nonalcoholic fatty liver disease (NAFLD) is highly prevalent and can result in nonalcoholic steatohepatitis (NASH) and progressive liver disease including cirrhosis and hepatocellular carcinoma. A growing body of literature implicates the peroxisome proliferators- activated receptors (PPARs) in the pathogenesis and treatment of NAFLD. These nuclear hormone receptors impact on hepatic triglyceride accumulation and insulin resistance. The aim of this review is to describe the data linking PPARα and PPART to NAFLD/NASH and to discuss the use of PPAR ligands for the treatment of NASH.展开更多
Background Rosiglitazone is known as the most potent and specific peroxisome proliferators-activated receptor γ (PPAR-γ) ligand. It has potentially far-reaching effects on pathophysiological processes, from cancer...Background Rosiglitazone is known as the most potent and specific peroxisome proliferators-activated receptor γ (PPAR-γ) ligand. It has potentially far-reaching effects on pathophysiological processes, from cancer to atherosclerosis and diabetes. However, it is not clear whether rosiglitazone affects the protein expression of transforming growth factor β3 (TGF-β3) and the cell proliferation in human uterine leiomyoma cells in vitro.Methods Human uterine leiomyoma tissues were dissected and cultured. Cells were divided into 5 groups: one control group and other four groups with different concentrations of rosiglitazone (10^-7, 10^-8, 10^-9 and 10^-10 mol/L). Cells were cultured for 72 hours in serum-free Dulbecco's modified Eagle's medium. MTT reduction assay was used to detect the cell proliferation. Reverse transcription polymerase chain reaction (RT-PCR) was used to detect the mRNA expression of PPAR-γ and TGF-β3. Immunofluorescence staining was used to detect the expressions of PPAR-γ and TGF-β3 proteins. Results MTT reduction assay indicated that the treatment with rosiglitazone (from 10^-7 to 10^-9 mol/L) resulted in an inhibition of the cell growths after 72 hours (P〈0.01). RT-PCR analysis revealed that 10^-7 mol/L rosiglitazone significantly affected the gene expression at 72-hour: PPAR-γ mRNA expression was up-regulated and TGF-β3 mRNA was down-regulated and rosiglitazone at the concentration of 10-7 mol/L affected these most effectively (P〈0.01). Immunofluorescence staining demonstrated that treatment with 10^-7 mol/L rosiglitazone resulted in the significant changes of PPAR-γ and TGF-β3 protein expressions compared with the other treatment groups and the control group at 72-hour (P〈0.01). All the effects of rosiglitazone on uterine leiomyoma cells were dose- and time-dependent in vitro. Conclusions The present study demonstrates that the PPAR-γ activator, rosiglitazone, inhibits the cell proliferation partly through the regulations of PPAR-γ and TGF-β3 expressions. The cross-talk between the signal pathways of PPAR-γ and TGF-β3 may be involved in the process.展开更多
文摘Nonalcoholic fatty liver disease (NAFLD) is highly prevalent and can result in nonalcoholic steatohepatitis (NASH) and progressive liver disease including cirrhosis and hepatocellular carcinoma. A growing body of literature implicates the peroxisome proliferators- activated receptors (PPARs) in the pathogenesis and treatment of NAFLD. These nuclear hormone receptors impact on hepatic triglyceride accumulation and insulin resistance. The aim of this review is to describe the data linking PPARα and PPART to NAFLD/NASH and to discuss the use of PPAR ligands for the treatment of NASH.
基金This work was supported by the Natural Science Foundation of Shandong Province (No.Y2006C67).
文摘Background Rosiglitazone is known as the most potent and specific peroxisome proliferators-activated receptor γ (PPAR-γ) ligand. It has potentially far-reaching effects on pathophysiological processes, from cancer to atherosclerosis and diabetes. However, it is not clear whether rosiglitazone affects the protein expression of transforming growth factor β3 (TGF-β3) and the cell proliferation in human uterine leiomyoma cells in vitro.Methods Human uterine leiomyoma tissues were dissected and cultured. Cells were divided into 5 groups: one control group and other four groups with different concentrations of rosiglitazone (10^-7, 10^-8, 10^-9 and 10^-10 mol/L). Cells were cultured for 72 hours in serum-free Dulbecco's modified Eagle's medium. MTT reduction assay was used to detect the cell proliferation. Reverse transcription polymerase chain reaction (RT-PCR) was used to detect the mRNA expression of PPAR-γ and TGF-β3. Immunofluorescence staining was used to detect the expressions of PPAR-γ and TGF-β3 proteins. Results MTT reduction assay indicated that the treatment with rosiglitazone (from 10^-7 to 10^-9 mol/L) resulted in an inhibition of the cell growths after 72 hours (P〈0.01). RT-PCR analysis revealed that 10^-7 mol/L rosiglitazone significantly affected the gene expression at 72-hour: PPAR-γ mRNA expression was up-regulated and TGF-β3 mRNA was down-regulated and rosiglitazone at the concentration of 10-7 mol/L affected these most effectively (P〈0.01). Immunofluorescence staining demonstrated that treatment with 10^-7 mol/L rosiglitazone resulted in the significant changes of PPAR-γ and TGF-β3 protein expressions compared with the other treatment groups and the control group at 72-hour (P〈0.01). All the effects of rosiglitazone on uterine leiomyoma cells were dose- and time-dependent in vitro. Conclusions The present study demonstrates that the PPAR-γ activator, rosiglitazone, inhibits the cell proliferation partly through the regulations of PPAR-γ and TGF-β3 expressions. The cross-talk between the signal pathways of PPAR-γ and TGF-β3 may be involved in the process.