Alcohol-induced fatty liver (steatosis) was believed to result from excessive generation of reducing equivalents from ethanol metabolism, thereby enhancing fat accumulation. Recent findings have revealed a more comple...Alcohol-induced fatty liver (steatosis) was believed to result from excessive generation of reducing equivalents from ethanol metabolism, thereby enhancing fat accumulation. Recent findings have revealed a more complex picture in which ethanol oxidation is still required, but specific transcription as well as humoral factors also have important roles. Transcription factors involved include the sterol regulatory element binding protein 1 (SREBP-1) which is activated to induce genes that regulate lipid biosynthesis. Conversely, ethanol consumption causes a general down-regulation of lipid (fatty acid) oxidation, a reflection of inactivation of the peroxisome proliferator- activated receptor-alpha (PPAR-α) that regulates genes involved in fatty acid oxidation. A third transcription factor is the early growth response-1 (Egr-1), which is strongly induced prior to the onset of steatosis. The activities of all these factors are governed by that of the principal regulatory enzyme, AMP kinase. Important humoral factors, including adiponectin, and tumor necrosis factor-α (TNF-α), also regulate alcohol-induced steatosis. Their levels are affected by alcohol consumption and by each other. This review will summarize the actions of these proteins in ethanol-elicited fatty liver. Because steatosis is now regarded as a significant risk factor for advanced liver pathology, an understanding of the molecular mechanisms in its etiology is essential for development of effective therapies.展开更多
Background Our previous papers indicate that flurbiprofen axetil (FA), a cyclooxygenase inhibitor, is a promising therapeutic strategy for cerebral ischemia in rats. This study aimed to investigate whether FA could ...Background Our previous papers indicate that flurbiprofen axetil (FA), a cyclooxygenase inhibitor, is a promising therapeutic strategy for cerebral ischemia in rats. This study aimed to investigate whether FA could promote a neuroprotective effect by activation of peroxisome proliferator-activated receptor-y (PPAR-y) after focal cerebral ischemia in rats. Methods Totally 48 male Sprague-Dawley (SD) rats were randomly assigned into six groups (n=8 in each group): animals in group ischemia/reperfusion (I/R) only received 120-minute transient middle cerebral artery occlusion (tMCAO); animals in group I/R +FA were administered FA (10 mg/kg) by caudal vein just after 120-minute tMCAO; animals in group I/R +FA+GW9662 were administered GW9662 (a PPAR-Y inhibitor, 1 mg/kg) intraperitoneally 30 minutes before cerebral ischemia onset and FA (10 mg/kg) by caudal vein just after 120-minute tMCAO; animals in group I/R +GW9662 were administered GW9662 (1 mg/kg) intraperitoneally 30 minutes before cerebral ischemia onset; animals in group I/R +DMSO were administered 3% DMSO (vehicle of GW9662, 1 ml/kg) intraperitoneally 30 minutes before cerebral ischemia onset; animals in sham group experienced the identical surgery apart from the insertion of the nylon filament. The neurologic deficit score (NDS) were performed at 72 hours after reperfusion, and then mean brain infarct volume percentage (MBIVP) was determined with 2,3,5-triphenyltetrazolium chloride (TTC) 10 g/L staining. Results NDS was significantly increased in group I/R+FA (12.0 (10.0-15.0)), group I/R+FA+GW9662 (10.0 (8.0-12.0)), and in group I/R+FA+DMSO (12.0 (9.0-14.0)) at 72 hours after reperfusion compared with those in group I/R (7.5 (6.0-10.0)). NDS was conspicuously different between group I/R+FA (12.0 (10.0-15.0)) and group I/R+FA+GW9662 (10.0 (8.0-12.0)). MBIVP in group I/R ((45.82±8.83)%) was significantly greater than that in group I/R+FA ((23.52±9.90)%), group I/R+FA+GW9662 ((33.17±7.15)%); MBIVP in group I/R+FA ((23.52±9.90)%) was significantly smaller than that in group I/R+FA+GW9662 ((33.17±7.15)%). Conclusions FA confers the neuroprotective effect on tMCAO in rats and the selective PPAR-Y antagonist GW9662 attenuates the effect of FA. FA could promote a neuroprotective effect by, or in part, activation of PPAR-y after focal cerebral ischemia in rats.展开更多
MicroRNA-124 contributes to neurogenesis through regulating its targets, but its expression both in the brain of Huntington's disease mouse models and patients is decreased. However, the effects of microRNA-124 on th...MicroRNA-124 contributes to neurogenesis through regulating its targets, but its expression both in the brain of Huntington's disease mouse models and patients is decreased. However, the effects of microRNA-124 on the progression of Huntington's disease have not been reported. Results from this study showed that microRNA-124 increased the latency to fall for each R6/2 Hunting- ton's disease transgenic mouse in the rotarod test. 5-Bromo-2'-deoxyuridine (BrdU) staining of the striatum shows an increase in neurogenesis. In addition, brain-derived neurotrophic factor and peroxisome proliferator-activated receptor gamma coactivator 1-alpha protein levels in the striatum were increased and SRY-related HMG box transcription factor 9 protein level was de- creased. These findings suggest that microRNA-124 slows down the progression of Huntington's disease possibly through its important role in neuronal differentiation and survival.展开更多
Accumulating evidence suggests that the Thl immune .response induced by various antigens such as oxidized low density lipoprotein (ox-LDL) and heat shock proteins (HSPs) play a key role in the process of atheroscl...Accumulating evidence suggests that the Thl immune .response induced by various antigens such as oxidized low density lipoprotein (ox-LDL) and heat shock proteins (HSPs) play a key role in the process of atherosclerosis.1Dendritic cells (DCs) are the most potent antigen-presenting cells (APCs) in the body with the unique ability to initiate a primary immune response to certain antigens by the activation of "naive" T cells.2 The maturation of DC with the upregulation of costimulatory molecules such as CD83, CD40, CD86, and major histocompatibility complex (MHC) class molecules such as human leukocyte antigen (HLA)-DR, is required for DC to activate T cells. Pathologic studies have shown that immature DCs are present in normal arterial while abundant mature DCs clustered with T cells could be visualized in atherogenic vessels suggesting that DC 3 maturation is linked to the progression of atherosclerosls. Peroxisome proliferator-activated receptors (PPARs) a, one member of the family of PPARs, was found to have favorable effects on slowing the progression of atherosclerosis and reducing the risk of coronary heart disease in high-risk patients independent from their metabolism effects.4'5 Furthermore, PPAR-α is also expressed on monocytes and monocyte-derived DCs.6 The effects of PPAR-α on DCs maturation and immune function remain unknown now, we therefore observed the effects of fenofibrate, a PPAR-α agonist, on the maturation and immune function of oxidized LDL-treated DCs in this study.展开更多
A series of novel 5-(trifluoromethyl)-1H-pyrazole-4-carboxamide derivatives(6a–6n, 7a, 7b, and 8a-8f)were synthesised by placing the amide bond at the 4-position of the pyrazole ring. These derivatives differed f...A series of novel 5-(trifluoromethyl)-1H-pyrazole-4-carboxamide derivatives(6a–6n, 7a, 7b, and 8a-8f)were synthesised by placing the amide bond at the 4-position of the pyrazole ring. These derivatives differed from the structure of chlorantraniliprole analogues with the amide bond at the 5-position of the pyrazole ring. Preliminary bioassay results revealed that a few title compounds exhibited good insecticidal activities against lepidopteran pests, such as Plutella xylostella, Mythimna separate, Heliothis armigera, and Ostrinia nubilalis. Some title compounds also elicited broad-spectrum insecticidal activities against dipterous insects including Culex pipiens pallens after altering the amide position. Similar to pyrazole-5-carboxamide analogues, compounds 6b and 6e showed 100% insecticidal activity against P. xylostella, C. pipiens pallens, and M. separate at concentrations of 200, 2, and 200 mg/m L, respectively.This finding suggested that 5-(trifluoromethyl)-1H-pyrazole-4-carboxamide derivatives are potential alternative insecticides for management of agriculture pests.展开更多
基金Supported by New Research Grant from the University of Nebraska Medical Center, the NIAAA, and Medical Research Funds from the Department of Veterans Affairs, United States
文摘Alcohol-induced fatty liver (steatosis) was believed to result from excessive generation of reducing equivalents from ethanol metabolism, thereby enhancing fat accumulation. Recent findings have revealed a more complex picture in which ethanol oxidation is still required, but specific transcription as well as humoral factors also have important roles. Transcription factors involved include the sterol regulatory element binding protein 1 (SREBP-1) which is activated to induce genes that regulate lipid biosynthesis. Conversely, ethanol consumption causes a general down-regulation of lipid (fatty acid) oxidation, a reflection of inactivation of the peroxisome proliferator- activated receptor-alpha (PPAR-α) that regulates genes involved in fatty acid oxidation. A third transcription factor is the early growth response-1 (Egr-1), which is strongly induced prior to the onset of steatosis. The activities of all these factors are governed by that of the principal regulatory enzyme, AMP kinase. Important humoral factors, including adiponectin, and tumor necrosis factor-α (TNF-α), also regulate alcohol-induced steatosis. Their levels are affected by alcohol consumption and by each other. This review will summarize the actions of these proteins in ethanol-elicited fatty liver. Because steatosis is now regarded as a significant risk factor for advanced liver pathology, an understanding of the molecular mechanisms in its etiology is essential for development of effective therapies.
基金This study was supported by a grant from the National Natural Science Foundation of China (No. 30872445).
文摘Background Our previous papers indicate that flurbiprofen axetil (FA), a cyclooxygenase inhibitor, is a promising therapeutic strategy for cerebral ischemia in rats. This study aimed to investigate whether FA could promote a neuroprotective effect by activation of peroxisome proliferator-activated receptor-y (PPAR-y) after focal cerebral ischemia in rats. Methods Totally 48 male Sprague-Dawley (SD) rats were randomly assigned into six groups (n=8 in each group): animals in group ischemia/reperfusion (I/R) only received 120-minute transient middle cerebral artery occlusion (tMCAO); animals in group I/R +FA were administered FA (10 mg/kg) by caudal vein just after 120-minute tMCAO; animals in group I/R +FA+GW9662 were administered GW9662 (a PPAR-Y inhibitor, 1 mg/kg) intraperitoneally 30 minutes before cerebral ischemia onset and FA (10 mg/kg) by caudal vein just after 120-minute tMCAO; animals in group I/R +GW9662 were administered GW9662 (1 mg/kg) intraperitoneally 30 minutes before cerebral ischemia onset; animals in group I/R +DMSO were administered 3% DMSO (vehicle of GW9662, 1 ml/kg) intraperitoneally 30 minutes before cerebral ischemia onset; animals in sham group experienced the identical surgery apart from the insertion of the nylon filament. The neurologic deficit score (NDS) were performed at 72 hours after reperfusion, and then mean brain infarct volume percentage (MBIVP) was determined with 2,3,5-triphenyltetrazolium chloride (TTC) 10 g/L staining. Results NDS was significantly increased in group I/R+FA (12.0 (10.0-15.0)), group I/R+FA+GW9662 (10.0 (8.0-12.0)), and in group I/R+FA+DMSO (12.0 (9.0-14.0)) at 72 hours after reperfusion compared with those in group I/R (7.5 (6.0-10.0)). NDS was conspicuously different between group I/R+FA (12.0 (10.0-15.0)) and group I/R+FA+GW9662 (10.0 (8.0-12.0)). MBIVP in group I/R ((45.82±8.83)%) was significantly greater than that in group I/R+FA ((23.52±9.90)%), group I/R+FA+GW9662 ((33.17±7.15)%); MBIVP in group I/R+FA ((23.52±9.90)%) was significantly smaller than that in group I/R+FA+GW9662 ((33.17±7.15)%). Conclusions FA confers the neuroprotective effect on tMCAO in rats and the selective PPAR-Y antagonist GW9662 attenuates the effect of FA. FA could promote a neuroprotective effect by, or in part, activation of PPAR-y after focal cerebral ischemia in rats.
基金supported by a grant(A121911 and HI14C2348)of the Korean Health Technology R&D Project,Ministry of Health&WelfareNational Research Foundation of Korea(NRF)(2011-0012728 and 2014R1A2A1A11051520)
文摘MicroRNA-124 contributes to neurogenesis through regulating its targets, but its expression both in the brain of Huntington's disease mouse models and patients is decreased. However, the effects of microRNA-124 on the progression of Huntington's disease have not been reported. Results from this study showed that microRNA-124 increased the latency to fall for each R6/2 Hunting- ton's disease transgenic mouse in the rotarod test. 5-Bromo-2'-deoxyuridine (BrdU) staining of the striatum shows an increase in neurogenesis. In addition, brain-derived neurotrophic factor and peroxisome proliferator-activated receptor gamma coactivator 1-alpha protein levels in the striatum were increased and SRY-related HMG box transcription factor 9 protein level was de- creased. These findings suggest that microRNA-124 slows down the progression of Huntington's disease possibly through its important role in neuronal differentiation and survival.
文摘Accumulating evidence suggests that the Thl immune .response induced by various antigens such as oxidized low density lipoprotein (ox-LDL) and heat shock proteins (HSPs) play a key role in the process of atherosclerosis.1Dendritic cells (DCs) are the most potent antigen-presenting cells (APCs) in the body with the unique ability to initiate a primary immune response to certain antigens by the activation of "naive" T cells.2 The maturation of DC with the upregulation of costimulatory molecules such as CD83, CD40, CD86, and major histocompatibility complex (MHC) class molecules such as human leukocyte antigen (HLA)-DR, is required for DC to activate T cells. Pathologic studies have shown that immature DCs are present in normal arterial while abundant mature DCs clustered with T cells could be visualized in atherogenic vessels suggesting that DC 3 maturation is linked to the progression of atherosclerosls. Peroxisome proliferator-activated receptors (PPARs) a, one member of the family of PPARs, was found to have favorable effects on slowing the progression of atherosclerosis and reducing the risk of coronary heart disease in high-risk patients independent from their metabolism effects.4'5 Furthermore, PPAR-α is also expressed on monocytes and monocyte-derived DCs.6 The effects of PPAR-α on DCs maturation and immune function remain unknown now, we therefore observed the effects of fenofibrate, a PPAR-α agonist, on the maturation and immune function of oxidized LDL-treated DCs in this study.
基金financially supported by the Key Technologies R&D Program (No. 2014BAD23B01)National Natural Science Foundation of China (Nos. 21202025, 21372052)
文摘A series of novel 5-(trifluoromethyl)-1H-pyrazole-4-carboxamide derivatives(6a–6n, 7a, 7b, and 8a-8f)were synthesised by placing the amide bond at the 4-position of the pyrazole ring. These derivatives differed from the structure of chlorantraniliprole analogues with the amide bond at the 5-position of the pyrazole ring. Preliminary bioassay results revealed that a few title compounds exhibited good insecticidal activities against lepidopteran pests, such as Plutella xylostella, Mythimna separate, Heliothis armigera, and Ostrinia nubilalis. Some title compounds also elicited broad-spectrum insecticidal activities against dipterous insects including Culex pipiens pallens after altering the amide position. Similar to pyrazole-5-carboxamide analogues, compounds 6b and 6e showed 100% insecticidal activity against P. xylostella, C. pipiens pallens, and M. separate at concentrations of 200, 2, and 200 mg/m L, respectively.This finding suggested that 5-(trifluoromethyl)-1H-pyrazole-4-carboxamide derivatives are potential alternative insecticides for management of agriculture pests.