The present work is concerned with the problem of mode Ⅲ crack perpendicular to the interface of a bi-strip composite. One of these strips is made of a functionally graded material and the other of an isotropic mater...The present work is concerned with the problem of mode Ⅲ crack perpendicular to the interface of a bi-strip composite. One of these strips is made of a functionally graded material and the other of an isotropic material, which contains an edge crack perpendicular to and terminating at the interface. Fourier transforms and asymptotic analysis are employed to reduce the problem to a singular integral equation which is numerically solved using Gauss-Chebyshev quadrature formulae. Furthermore, a parametric study is carried out to investigate the effects of elastic and geometric characteristics of the composite on the values of stress intensity factor.展开更多
This paper presents the fully differential cross sections (FDCS) for 102eV electron impact single ionization of helium for both the coplanar and perpendicular plane asymmetric geometries within the framework of dyna...This paper presents the fully differential cross sections (FDCS) for 102eV electron impact single ionization of helium for both the coplanar and perpendicular plane asymmetric geometries within the framework of dynamically screened three-Coulomb-wave theory. Comparisons are made with the experimental data and those of the three-Coulomb wave function model and second-order distorted-wave Born method. The angular distribution and relative heights of the present FDCS is found to be in very good agreement with the experimental data in the perpendicular plane geometry. It is shown that dynamical screening effects are significant in this geometry. Three-body coupling is expected to be weak in the coplanar geometry, although the precise absolute value of the cross section is still sensitive to the interaction details.展开更多
文摘The present work is concerned with the problem of mode Ⅲ crack perpendicular to the interface of a bi-strip composite. One of these strips is made of a functionally graded material and the other of an isotropic material, which contains an edge crack perpendicular to and terminating at the interface. Fourier transforms and asymptotic analysis are employed to reduce the problem to a singular integral equation which is numerically solved using Gauss-Chebyshev quadrature formulae. Furthermore, a parametric study is carried out to investigate the effects of elastic and geometric characteristics of the composite on the values of stress intensity factor.
基金Project supported by the Natural Science Foundation of Shanxi Province,China (Grant No 20051008)the Science Foundation for Returnee of Shanxi Province of China (Grant No 02-16)
文摘This paper presents the fully differential cross sections (FDCS) for 102eV electron impact single ionization of helium for both the coplanar and perpendicular plane asymmetric geometries within the framework of dynamically screened three-Coulomb-wave theory. Comparisons are made with the experimental data and those of the three-Coulomb wave function model and second-order distorted-wave Born method. The angular distribution and relative heights of the present FDCS is found to be in very good agreement with the experimental data in the perpendicular plane geometry. It is shown that dynamical screening effects are significant in this geometry. Three-body coupling is expected to be weak in the coplanar geometry, although the precise absolute value of the cross section is still sensitive to the interaction details.