As one of the basic inventory cost models, the (Q, τ)inventory cost model of dual suppliers with random procurement lead time is mostly formulated by using the concepts of "effective lead time" and "lead time de...As one of the basic inventory cost models, the (Q, τ)inventory cost model of dual suppliers with random procurement lead time is mostly formulated by using the concepts of "effective lead time" and "lead time demand", which may lead to an imprecise inventory cost. Through the real-time statistic of the inventory quantities, this paper considers the precise (Q, τ) inventory cost model of dual supplier procurement by using an infinitesimal dividing method. The traditional modeling method of the inventory cost for dual supplier procurement includes complex procedures. To reduce the complexity effectively, the presented method investigates the statistics properties in real-time of the inventory quantities with the application of the infinitesimal dividing method. It is proved that the optimal holding and shortage costs of dual supplier procurement are less than those of single supplier procurement respectively. With the assumption that both suppliers have the same distribution of lead times, the convexity of the cost function per unit time is proved. So the optimal solution can be easily obtained by applying the classical convex optimization methods. The numerical examples are given to verify the main conclusions.展开更多
Background:The local pivotal method(LPM)utilizing auxiliary data in sample selection has recently been proposed as a sampling method for national forest inventories(NFIs).Its performance compared to simple random samp...Background:The local pivotal method(LPM)utilizing auxiliary data in sample selection has recently been proposed as a sampling method for national forest inventories(NFIs).Its performance compared to simple random sampling(SRS)and LPM with geographical coordinates has produced promising results in simulation studies.In this simulation study we compared all these sampling methods to systematic sampling.The LPM samples were selected solely using the coordinates(LPMxy)or,in addition to that,auxiliary remote sensing-based forest variables(RS variables).We utilized field measurement data(NFI-field)and Multi-Source NFI(MS-NFI)maps as target data,and independent MS-NFI maps as auxiliary data.The designs were compared using relative efficiency(RE);a ratio of mean squared errors of the reference sampling design against the studied design.Applying a method in NFI also requires a proven estimator for the variance.Therefore,three different variance estimators were evaluated against the empirical variance of replications:1)an estimator corresponding to SRS;2)a Grafström-Schelin estimator repurposed for LPM;and 3)a Matérn estimator applied in the Finnish NFI for systematic sampling design.Results:The LPMxy was nearly comparable with the systematic design for the most target variables.The REs of the LPM designs utilizing auxiliary data compared to the systematic design varied between 0.74–1.18,according to the studied target variable.The SRS estimator for variance was expectedly the most biased and conservative estimator.Similarly,the Grafström-Schelin estimator gave overestimates in the case of LPMxy.When the RS variables were utilized as auxiliary data,the Grafström-Schelin estimates tended to underestimate the empirical variance.In systematic sampling the Matérn and Grafström-Schelin estimators performed for practical purposes equally.Conclusions:LPM optimized for a specific variable tended to be more efficient than systematic sampling,but all of the considered LPM designs were less efficient than the systematic sampling design for some target variables.The Grafström-Schelin estimator could be used as such with LPMxy or instead of the Matérn estimator in systematic sampling.Further studies of the variance estimators are needed if other auxiliary variables are to be used in LPM.展开更多
The geological and geographical position of the Northwest Himalayas makes it a vulnerable area for mass movements particularly landslides and debris flows. Mass movements have had a substantial impact on the study are...The geological and geographical position of the Northwest Himalayas makes it a vulnerable area for mass movements particularly landslides and debris flows. Mass movements have had a substantial impact on the study area which is extending along Karakorum Highway(KKH) from Besham to Chilas. Intense seismicity, deep gorges, steep terrain and extreme climatic events trigger multiple mountain hazards along the KKH, among which debris flow is recognized as the most destructive geohazard. This study aims to prepare a field-based debris flow inventory map at a regional scale along a 200 km stretch from Besham to Chilas. A total of 117 debris flows were identified in the field, and subsequently, a point-based debris-flow inventory and catchment delineation were performed through Arc GIS analysis. Regional scale debris flow susceptibility and propagation maps were prepared using Weighted Overlay Method(WOM) and Flow-R technique sequentially. Predisposing factors include slope, slope aspect, elevation, Topographic Roughness Index(TRI), Topographic Wetness Index(TWI), stream buffer, distance to faults, lithology rainfall, curvature, and collapsed material layer. The dataset was randomly divided into training data(75%) and validation data(25%). Results were validated through the Receiver Operator Characteristics(ROC) curve. Results show that Area Under the Curve(AUC) using WOM model is 79.2%. Flow-R propagation of debris flow shows that the 13.15%, 22.94%, and 63.91% areas are very high, high, and low susceptible to debris flow respectively. The propagation predicated by Flow-R validates the naturally occurring debris flow propagation as observed in the field surveys. The output of this research will provide valuable input to the decision makers for the site selection, designing of the prevention system, and for the protection of current infrastructure.展开更多
In this paper we developed a fuzzy inventory model for deteriorating items with time dependent demand rate. Shortages are allowed and completely backlogged. The backlogging rate of unsatisfied demand is assumed to be ...In this paper we developed a fuzzy inventory model for deteriorating items with time dependent demand rate. Shortages are allowed and completely backlogged. The backlogging rate of unsatisfied demand is assumed to be a decreasing exponential function of waiting time. The demand rate, deterioration rate and backlogging rate are assumed as a triangular fuzzy numbers. The purpose of our study is to defuzzify the total profit function by signed distance method and centroid method. Further a numerical example is also given to demonstrate the developed crisp and fuzzy models. A sensitivity analysis is also given to show the effect of change of the parameters.展开更多
In this study, for accuracy and cost an optimal inventory method was examined and introduced to obtain information about Zagros forests, Iran. For this purpose,three distance sampling methods(compound, order distance ...In this study, for accuracy and cost an optimal inventory method was examined and introduced to obtain information about Zagros forests, Iran. For this purpose,three distance sampling methods(compound, order distance and random-pairs) in 5 inventory networks(100 m × 100 m, 100 m × 150 m, 100 m × 200 m,150 m × 150 m, 200 m × 200 m) were implemented in GIS environment, and the related statistical analyses were carried out. Average tree density and canopy cover in hectare with 100% inventory were compared to each other.All the studied methods were implemented in 30 inventory points, and the implementation time of each was recorded.According to the results, the best inventory methods for estimating density and canopy cover were compound150 m × 150 m and 100 m × 100 m methods, respectively. The minimum amount of product inventory time per second(T), and(E%)2 square percent of inventory error of sampling for the compound 150 m × 150 m method regarding density in hectare was 691.8, and for the compound 100 m × 100 m method regarding canopy of 12,089 ha. It can be concluded that compound method is the best for estimating density and canopy features of the forests area.展开更多
基金supported by the National High Technology Research and Development Program of China(863 Program)(2007AA04Z102)the National Natural Science Foundation of China(6087407160574077).
文摘As one of the basic inventory cost models, the (Q, τ)inventory cost model of dual suppliers with random procurement lead time is mostly formulated by using the concepts of "effective lead time" and "lead time demand", which may lead to an imprecise inventory cost. Through the real-time statistic of the inventory quantities, this paper considers the precise (Q, τ) inventory cost model of dual supplier procurement by using an infinitesimal dividing method. The traditional modeling method of the inventory cost for dual supplier procurement includes complex procedures. To reduce the complexity effectively, the presented method investigates the statistics properties in real-time of the inventory quantities with the application of the infinitesimal dividing method. It is proved that the optimal holding and shortage costs of dual supplier procurement are less than those of single supplier procurement respectively. With the assumption that both suppliers have the same distribution of lead times, the convexity of the cost function per unit time is proved. So the optimal solution can be easily obtained by applying the classical convex optimization methods. The numerical examples are given to verify the main conclusions.
基金the Ministry of Agriculture and Forestry key project“Puuta liikkeelle ja uusia tuotteita metsästä”(“Wood on the move and new products from forest”)Academy of Finland(project numbers 295100 , 306875).
文摘Background:The local pivotal method(LPM)utilizing auxiliary data in sample selection has recently been proposed as a sampling method for national forest inventories(NFIs).Its performance compared to simple random sampling(SRS)and LPM with geographical coordinates has produced promising results in simulation studies.In this simulation study we compared all these sampling methods to systematic sampling.The LPM samples were selected solely using the coordinates(LPMxy)or,in addition to that,auxiliary remote sensing-based forest variables(RS variables).We utilized field measurement data(NFI-field)and Multi-Source NFI(MS-NFI)maps as target data,and independent MS-NFI maps as auxiliary data.The designs were compared using relative efficiency(RE);a ratio of mean squared errors of the reference sampling design against the studied design.Applying a method in NFI also requires a proven estimator for the variance.Therefore,three different variance estimators were evaluated against the empirical variance of replications:1)an estimator corresponding to SRS;2)a Grafström-Schelin estimator repurposed for LPM;and 3)a Matérn estimator applied in the Finnish NFI for systematic sampling design.Results:The LPMxy was nearly comparable with the systematic design for the most target variables.The REs of the LPM designs utilizing auxiliary data compared to the systematic design varied between 0.74–1.18,according to the studied target variable.The SRS estimator for variance was expectedly the most biased and conservative estimator.Similarly,the Grafström-Schelin estimator gave overestimates in the case of LPMxy.When the RS variables were utilized as auxiliary data,the Grafström-Schelin estimates tended to underestimate the empirical variance.In systematic sampling the Matérn and Grafström-Schelin estimators performed for practical purposes equally.Conclusions:LPM optimized for a specific variable tended to be more efficient than systematic sampling,but all of the considered LPM designs were less efficient than the systematic sampling design for some target variables.The Grafström-Schelin estimator could be used as such with LPMxy or instead of the Matérn estimator in systematic sampling.Further studies of the variance estimators are needed if other auxiliary variables are to be used in LPM.
基金financially supported by the Higher Education Commission of Pakistan (HEC) grant under National Research Program for Universities (NRPU) with No: (20-14681/NRPU/R&D/HEC/20212021)。
文摘The geological and geographical position of the Northwest Himalayas makes it a vulnerable area for mass movements particularly landslides and debris flows. Mass movements have had a substantial impact on the study area which is extending along Karakorum Highway(KKH) from Besham to Chilas. Intense seismicity, deep gorges, steep terrain and extreme climatic events trigger multiple mountain hazards along the KKH, among which debris flow is recognized as the most destructive geohazard. This study aims to prepare a field-based debris flow inventory map at a regional scale along a 200 km stretch from Besham to Chilas. A total of 117 debris flows were identified in the field, and subsequently, a point-based debris-flow inventory and catchment delineation were performed through Arc GIS analysis. Regional scale debris flow susceptibility and propagation maps were prepared using Weighted Overlay Method(WOM) and Flow-R technique sequentially. Predisposing factors include slope, slope aspect, elevation, Topographic Roughness Index(TRI), Topographic Wetness Index(TWI), stream buffer, distance to faults, lithology rainfall, curvature, and collapsed material layer. The dataset was randomly divided into training data(75%) and validation data(25%). Results were validated through the Receiver Operator Characteristics(ROC) curve. Results show that Area Under the Curve(AUC) using WOM model is 79.2%. Flow-R propagation of debris flow shows that the 13.15%, 22.94%, and 63.91% areas are very high, high, and low susceptible to debris flow respectively. The propagation predicated by Flow-R validates the naturally occurring debris flow propagation as observed in the field surveys. The output of this research will provide valuable input to the decision makers for the site selection, designing of the prevention system, and for the protection of current infrastructure.
文摘In this paper we developed a fuzzy inventory model for deteriorating items with time dependent demand rate. Shortages are allowed and completely backlogged. The backlogging rate of unsatisfied demand is assumed to be a decreasing exponential function of waiting time. The demand rate, deterioration rate and backlogging rate are assumed as a triangular fuzzy numbers. The purpose of our study is to defuzzify the total profit function by signed distance method and centroid method. Further a numerical example is also given to demonstrate the developed crisp and fuzzy models. A sensitivity analysis is also given to show the effect of change of the parameters.
文摘In this study, for accuracy and cost an optimal inventory method was examined and introduced to obtain information about Zagros forests, Iran. For this purpose,three distance sampling methods(compound, order distance and random-pairs) in 5 inventory networks(100 m × 100 m, 100 m × 150 m, 100 m × 200 m,150 m × 150 m, 200 m × 200 m) were implemented in GIS environment, and the related statistical analyses were carried out. Average tree density and canopy cover in hectare with 100% inventory were compared to each other.All the studied methods were implemented in 30 inventory points, and the implementation time of each was recorded.According to the results, the best inventory methods for estimating density and canopy cover were compound150 m × 150 m and 100 m × 100 m methods, respectively. The minimum amount of product inventory time per second(T), and(E%)2 square percent of inventory error of sampling for the compound 150 m × 150 m method regarding density in hectare was 691.8, and for the compound 100 m × 100 m method regarding canopy of 12,089 ha. It can be concluded that compound method is the best for estimating density and canopy features of the forests area.