The intellectual heritage of modernity needs rethinking. It is marked by radical humanism and implied by the ideas of Descartes and Kant above all, which introduces an unbridgeable gap between animals and human perso...The intellectual heritage of modernity needs rethinking. It is marked by radical humanism and implied by the ideas of Descartes and Kant above all, which introduces an unbridgeable gap between animals and human persons (nonhuman and human animals). Intuitive sensibility to the question of the welfare of nonhuman animals meets a theoretical ally in the rapidly growing knowledge on their subjectivity and makes us pose a questions about their ontological status. This context arouses a possibility of a turn to personalist ethics, yet not to its anthropocentric version implied by Kant, but to personalism conceived of as an instance of value ethics as exemplified by Antonio Rosmini and Karol Wojtyta (John Paul II).展开更多
Maintaining thermal comfort within the human body is crucial for optimal health and overall well-being.By merely broadening the setpoint of indoor temperatures,we could significantly slash energy usage in building hea...Maintaining thermal comfort within the human body is crucial for optimal health and overall well-being.By merely broadening the setpoint of indoor temperatures,we could significantly slash energy usage in building heating,ventilation,and air-conditioning systems.In recent years,there has been a surge in advancements in personal thermal management(PTM),aiming to regulate heat and moisture transfer within our immediate surroundings,clothing,and skin.The advent of PTM is driven by the rapid development in nano/micro-materials and energy science and engineering.An emerging research area in PTM is personal radiative thermal management(PRTM),which demonstrates immense potential with its high radiative heat transfer efficiency and ease of regulation.However,it is less taken into account in traditional textiles,and there currently lies a gap in our knowledge and understanding of PRTM.In this review,we aim to present a thorough analysis of advanced textile materials and technologies for PRTM.Specifically,we will introduce and discuss the underlying radiation heat transfer mechanisms,fabrication methods of textiles,and various indoor/outdoor applications in light of their different regulation functionalities,including radiative cooling,radiative heating,and dual-mode thermoregulation.Furthermore,we will shine a light on the current hurdles,propose potential strategies,and delve into future technology trends for PRTM with an emphasis on functionalities and applications.展开更多
Two questions in the research of animal personality—whether there is a correlation between a personality trait and individual reproductive success,and what is the genetic basis underlying a personality trait—remain ...Two questions in the research of animal personality—whether there is a correlation between a personality trait and individual reproductive success,and what is the genetic basis underlying a personality trait—remain unresolved.We addressed these two questions in three shrub-nesting birds,the Azure-winged Magpie(Cyanopica cyanus,AM),White-collared Blackbird(Turdus albocinctus,WB),and Brown-cheeked Laughingthrush(Trochalopteron henrici,BL).The personality type of an individual was first identified according to its response to a territorial intruder.Then,we compared the fleeing distance,breeding parameters,and differential expressed genes(DEGs) in the brain transcriptome between bold and shy breeders.In the three species,bold breeders exhibited more aggressiveness towards an intruder of their territory than did shy breeders.The reproductive success of bold breeders was significantly higher than that of shy breeders in AM but not in WB and BL.The three species shared one DEG,crabp1,which was up-regulated in bold relative to in shy individuals.By regulating the expression of corticotropin-releasing hormone,higher crabp1 gene expression can decrease cellular response to retinoic acid.Therefore,bold individuals are insensitive to external stresses and able to exhibit more aggressiveness to intruders than their shier counterparts.Aggressiveness is beneficial to bold individuals in AM but not in WB and BL because the former could evoke neighbors to make the same response of defending against intruders but the latter could not.Although a personality trait may have the same genetic basis across species,its correlation with reproductive success depends largely on the life history style of a species.展开更多
Genome sequencing has revealed frequent mutations in Ras homolog family member A(RHOA)among various cancers with unique aberrant profiles and pathogenic effects,especially in peripheral T-cell lymphoma(PTCL).The discr...Genome sequencing has revealed frequent mutations in Ras homolog family member A(RHOA)among various cancers with unique aberrant profiles and pathogenic effects,especially in peripheral T-cell lymphoma(PTCL).The discrete positional distribution and types of RHOA amino acid substitutions vary according to the tumor type,thereby leading to different functional and biological properties,which provide new insight into the molecular pathogenesis and potential targeted therapies for various tumors.However,the similarities and discrepancies in characteristics of RHOA mutations among various histologic subtypes of PTCL have not been fully elucidated.Herein we highlight the inconsistencies and complexities of the type and location of RHOA mutations and demonstrate the contribution of RHOA variants to the pathogenesis of PTCL by combining epigenetic abnormalities and activating multiple downstream pathways.The promising potential of targeting RHOA as a therapeutic modality is also outlined.This review provides new insight in the field of personalized medicine to improve the clinical outcomes for patients.展开更多
The attention mechanism can extract salient features in images,which has been proved to be effective in improving the performance of person re-identification(Re-ID).However,most of the existing attention modules have ...The attention mechanism can extract salient features in images,which has been proved to be effective in improving the performance of person re-identification(Re-ID).However,most of the existing attention modules have the following two shortcomings:On the one hand,they mostly use global average pooling to generate context descriptors,without highlighting the guiding role of salient information on descriptor generation,resulting in insufficient ability of the final generated attention mask representation;On the other hand,the design of most attention modules is complicated,which greatly increases the computational cost of the model.To solve these problems,this paper proposes an attention module called self-supervised recalibration(SR)block,which introduces both global and local information through adaptive weighted fusion to generate a more refined attention mask.In particular,a special"Squeeze-Excitation"(SE)unit is designed in the SR block to further process the generated intermediate masks,both for nonlinearizations of the features and for constraint of the resulting computation by controlling the number of channels.Furthermore,we combine the most commonly used Res Net-50 to construct the instantiation model of the SR block,and verify its effectiveness on multiple Re-ID datasets,especially the mean Average Precision(m AP)on the Occluded-Duke dataset exceeds the state-of-the-art(SOTA)algorithm by 4.49%.展开更多
Moisture-enabled electricity(ME)is a method of converting the potential energy of water in the external environment into electrical energy through the interaction of functional materials with water molecules and can b...Moisture-enabled electricity(ME)is a method of converting the potential energy of water in the external environment into electrical energy through the interaction of functional materials with water molecules and can be directly applied to energy harvesting and signal expression.However,ME can be unreliable in numerous applications due to its sluggish response to moisture,thus sacrificing the value of fast energy harvesting and highly accurate information representation.Here,by constructing a moisture-electric-moisture-sensitive(ME-MS)heterostructure,we develop an efficient ME generator with ultra-fast electric response to moisture achieved by triggering Grotthuss protons hopping in the sensitized ZnO,which modulates the heterostructure built-in interfacial potential,enables quick response(0.435 s),an unprecedented ultra-fast response rate of 972.4 mV s^(−1),and a durable electrical signal output for 8 h without any attenuation.Our research provides an efficient way to generate electricity and important insight for a deeper understanding of the mechanisms of moisture-generated carrier migration in ME generator,which has a more comprehensive working scene and can serve as a typical model for human health monitoring and smart medical electronics design.展开更多
Person identification is one of the most vital tasks for network security. People are more concerned about theirsecurity due to traditional passwords becoming weaker or leaking in various attacks. In recent decades, f...Person identification is one of the most vital tasks for network security. People are more concerned about theirsecurity due to traditional passwords becoming weaker or leaking in various attacks. In recent decades, fingerprintsand faces have been widely used for person identification, which has the risk of information leakage as a resultof reproducing fingers or faces by taking a snapshot. Recently, people have focused on creating an identifiablepattern, which will not be reproducible falsely by capturing psychological and behavioral information of a personusing vision and sensor-based techniques. In existing studies, most of the researchers used very complex patternsin this direction, which need special training and attention to remember the patterns and failed to capturethe psychological and behavioral information of a person properly. To overcome these problems, this researchdevised a novel dynamic hand gesture-based person identification system using a Leap Motion sensor. Thisstudy developed two hand gesture-based pattern datasets for performing the experiments, which contained morethan 500 samples, collected from 25 subjects. Various static and dynamic features were extracted from the handgeometry. Randomforest was used to measure feature importance using the Gini Index. Finally, the support vectormachinewas implemented for person identification and evaluate its performance using identification accuracy. Theexperimental results showed that the proposed system produced an identification accuracy of 99.8% for arbitraryhand gesture-based patterns and 99.6% for the same dynamic hand gesture-based patterns. This result indicatedthat the proposed system can be used for person identification in the field of security.展开更多
With the maturity and development of 5G field,Mobile Edge CrowdSensing(MECS),as an intelligent data collection paradigm,provides a broad prospect for various applications in IoT.However,sensing users as data uploaders...With the maturity and development of 5G field,Mobile Edge CrowdSensing(MECS),as an intelligent data collection paradigm,provides a broad prospect for various applications in IoT.However,sensing users as data uploaders lack a balance between data benefits and privacy threats,leading to conservative data uploads and low revenue or excessive uploads and privacy breaches.To solve this problem,a Dynamic Privacy Measurement and Protection(DPMP)framework is proposed based on differential privacy and reinforcement learning.Firstly,a DPM model is designed to quantify the amount of data privacy,and a calculation method for personalized privacy threshold of different users is also designed.Furthermore,a Dynamic Private sensing data Selection(DPS)algorithm is proposed to help sensing users maximize data benefits within their privacy thresholds.Finally,theoretical analysis and ample experiment results show that DPMP framework is effective and efficient to achieve a balance between data benefits and sensing user privacy protection,in particular,the proposed DPMP framework has 63%and 23%higher training efficiency and data benefits,respectively,compared to the Monte Carlo algorithm.展开更多
Lung cancer is the most prevalent cancer diagnosis and the leading cause of cancer death worldwide.Therapeutic failure in lung cancer(LUAD)is heavily influenced by drug resistance.This challenge stems from the diverse...Lung cancer is the most prevalent cancer diagnosis and the leading cause of cancer death worldwide.Therapeutic failure in lung cancer(LUAD)is heavily influenced by drug resistance.This challenge stems from the diverse cell populations within the tumor,each having unique genetic,epigenetic,and phenotypic profiles.Such variations lead to varied therapeutic responses,thereby contributing to tumor relapse and disease progression.Methods:The Genomics of Drug Sensitivity in Cancer(GDSC)database was used in this investigation to obtain the mRNA expression dataset,genomic mutation profile,and drug sensitivity information of NSCLS.Machine Learning(ML)methods,including Random Forest(RF),Artificial Neurol Network(ANN),and Support Vector Machine(SVM),were used to predict the response status of each compound based on the mRNA and mutation characteristics determined using statistical methods.The most suitable method for each drug was proposed by comparing the prediction accuracy of different ML methods,and the selected mRNA and mutation characteristics were identified as molecular features for the drug-responsive cancer subtype.Finally,the prognostic influence of molecular features on the mutational subtype of LUAD in publicly available datasets.Results:Our analyses yielded 1,564 gene features and 45 mutational features for 46 drugs.Applying the ML approach to predict the drug response for each medication revealed an upstanding performance for SVM in predicting Afuresertib drug response(area under the curve[AUC]0.875)using CIT,GAS2L3,STAG3L3,ATP2B4-mut,and IL15RA-mut as molecular features.Furthermore,the ANN algorithm using 9 mRNA characteristics demonstrated the highest prediction performance(AUC 0.780)in Gefitinib with CCL23-mut.Conclusion:This work extensively investigated the mRNA and mutation signatures associated with drug response in LUAD using a machine-learning approach and proposed a priority algorithm to predict drug response for different drugs.展开更多
Video-based person re-identification(Re-ID),a subset of retrieval tasks,faces challenges like uncoordinated sample capturing,viewpoint variations,occlusions,cluttered backgrounds,and sequence uncertainties.Recent adva...Video-based person re-identification(Re-ID),a subset of retrieval tasks,faces challenges like uncoordinated sample capturing,viewpoint variations,occlusions,cluttered backgrounds,and sequence uncertainties.Recent advancements in deep learning have significantly improved video-based person Re-ID,laying a solid foundation for further progress in the field.In order to enrich researchers’insights into the latest research findings and prospective developments,we offer an extensive overview and meticulous analysis of contemporary video-based person ReID methodologies,with a specific emphasis on network architecture design and loss function design.Firstly,we introduce methods based on network architecture design and loss function design from multiple perspectives,and analyzes the advantages and disadvantages of these methods.Furthermore,we provide a synthesis of prevalent datasets and key evaluation metrics utilized within this field to assist researchers in assessing methodological efficacy and establishing benchmarks for performance evaluation.Lastly,through a critical evaluation of the experimental outcomes derived from various methodologies across four prominent public datasets,we identify promising research avenues and offer valuable insights to steer future exploration and innovation in this vibrant and evolving field of video-based person Re-ID.This comprehensive analysis aims to equip researchers with the necessary knowledge and strategic foresight to navigate the complexities of video-based person Re-ID,fostering continued progress and breakthroughs in this challenging yet promising research domain.展开更多
In this editorial,we comment on the article by Zhang et al entitled Development of a machine learning-based model for predicting the risk of early postoperative recurrence of hepatocellular carcinoma.Hepatocellular ca...In this editorial,we comment on the article by Zhang et al entitled Development of a machine learning-based model for predicting the risk of early postoperative recurrence of hepatocellular carcinoma.Hepatocellular carcinoma(HCC),which is characterized by high incidence and mortality rates,remains a major global health challenge primarily due to the critical issue of postoperative recurrence.Early recurrence,defined as recurrence that occurs within 2 years posttreatment,is linked to the hidden spread of the primary tumor and significantly impacts patient survival.Traditional predictive factors,including both patient-and treatment-related factors,have limited predictive ability with respect to HCC recurrence.The integration of machine learning algorithms is fueled by the exponential growth of computational power and has revolutionized HCC research.The study by Zhang et al demonstrated the use of a groundbreaking preoperative prediction model for early postoperative HCC recurrence.Challenges persist,including sample size constraints,issues with handling data,and the need for further validation and interpretability.This study emphasizes the need for collaborative efforts,multicenter studies and comparative analyses to validate and refine the model.Overcoming these challenges and exploring innovative approaches,such as multi-omics integration,will enhance personalized oncology care.This study marks a significant stride toward precise,efficient,and personalized oncology practices,thus offering hope for improved patient outcomes in the field of HCC treatment.展开更多
Handwriting is a unique and significant human feature that distinguishes them from one another.There are many researchers have endeavored to develop writing recognition systems utilizing specific signatures or symbols...Handwriting is a unique and significant human feature that distinguishes them from one another.There are many researchers have endeavored to develop writing recognition systems utilizing specific signatures or symbols for person identification through verification.However,such systems are susceptible to forgery,posing security risks.In response to these challenges,we propose an innovative hybrid technique for individual identification based on independent handwriting,eliminating the reliance on specific signatures or symbols.In response to these challenges,we propose an innovative hybrid technique for individual identification based on independent handwriting,eliminating the reliance on specific signatures or symbols.Our innovative method is intricately designed,encompassing five distinct phases:data collection,preprocessing,feature extraction,significant feature selection,and classification.One key advancement lies in the creation of a novel dataset specifically tailored for Bengali handwriting(BHW),setting the foundation for our comprehensive approach.Post-preprocessing,we embarked on an exhaustive feature extraction process,encompassing integration with kinematic,statistical,spatial,and composite features.This meticulous amalgamation resulted in a robust set of 91 features.To enhance the efficiency of our system,we employed an analysis of variance(ANOVA)F test and mutual information scores approach,meticulously selecting the most pertinent features.In the identification phase,we harnessed the power of cutting-edge deep learning models,notably the Convolutional Neural Network(CNN)and Bidirectional Long Short-Term Memory(BiLSTM).These models underwent rigorous training and testing to accurately discern individuals based on their handwriting characteristics.Moreover,our methodology introduces a groundbreaking hybrid model that synergizes CNN and BiLSTM,capitalizing on fine motor features for enhanced individual classifications.Crucially,our experimental results underscore the superiority of our approach.The CNN,BiLSTM,and hybrid models exhibited superior performance in individual classification when compared to prevailing state-of-the-art techniques.This validates our method’s efficacy and underscores its potential to outperform existing technologies,marking a significant stride forward in the realm of individual identification through handwriting analysis.展开更多
Gastric cancer ranks as the sixth most prevalent cancer worldwide.In recent research within the realm of gastric cancer treatment,the identification and application of immune-related genetic features have emerged as g...Gastric cancer ranks as the sixth most prevalent cancer worldwide.In recent research within the realm of gastric cancer treatment,the identification and application of immune-related genetic features have emerged as groundbreaking advancements.The study by Ma et al,which developed a prognostic model based on 10 genes,categorizes patients into high and low-risk groups to predict their responsiveness to immune checkpoint inhibitor therapy.This research underscores the potential of immune-related genes as biomarkers for personalized treatment,offering insights into tumor mutation burden and immune phenotype scores.We advocate for further validation,understanding of biological mechanisms,and integration of diverse datasets to enhance the model's predictive accuracy and clinical application,marking a significant step towards personalized and precise treatment for gastric cancer.展开更多
Personality recognition plays a pivotal role when developing user-centric solutions such as recommender systems or decision support systems across various domains,including education,e-commerce,or human resources.Tra-...Personality recognition plays a pivotal role when developing user-centric solutions such as recommender systems or decision support systems across various domains,including education,e-commerce,or human resources.Tra-ditional machine learning techniques have been broadly employed for personality trait identification;nevertheless,the development of new technologies based on deep learning has led to new opportunities to improve their performance.This study focuses on the capabilities of pre-trained language models such as BERT,RoBERTa,ALBERT,ELECTRA,ERNIE,or XLNet,to deal with the task of personality recognition.These models are able to capture structural features from textual content and comprehend a multitude of language facets and complex features such as hierarchical relationships or long-term dependencies.This makes them suitable to classify multi-label personality traits from reviews while mitigating computational costs.The focus of this approach centers on developing an architecture based on different layers able to capture the semantic context and structural features from texts.Moreover,it is able to fine-tune the previous models using the MyPersonality dataset,which comprises 9,917 status updates contributed by 250 Facebook users.These status updates are categorized according to the well-known Big Five personality model,setting the stage for a comprehensive exploration of personality traits.To test the proposal,a set of experiments have been performed using different metrics such as the exact match ratio,hamming loss,zero-one-loss,precision,recall,F1-score,and weighted averages.The results reveal ERNIE is the top-performing model,achieving an exact match ratio of 72.32%,an accuracy rate of 87.17%,and 84.41%of F1-score.The findings demonstrate that the tested models substantially outperform other state-of-the-art studies,enhancing the accuracy by at least 3%and confirming them as powerful tools for personality recognition.These findings represent substantial advancements in personality recognition,making them appropriate for the development of user-centric applications.展开更多
The exercise recommendation system is emerging as a promising application in online learning scenarios,providing personalized recommendations to assist students with explicit learning directions.Existing solutions gen...The exercise recommendation system is emerging as a promising application in online learning scenarios,providing personalized recommendations to assist students with explicit learning directions.Existing solutions generally follow a collaborative filtering paradigm,while the implicit connections between students(exercises)have been largely ignored.In this study,we aim to propose an exercise recommendation paradigm that can reveal the latent connections between student-student(exercise-exercise).Specifically,a new framework was proposed,namely personalized exercise recommendation with student and exercise portraits(PERP).It consists of three sequential and interdependent modules:Collaborative student exercise graph(CSEG)construction,joint random walk,and recommendation list optimization.Technically,CSEG is created as a unified heterogeneous graph with students’response behaviors and student(exercise)relationships.Then,a joint random walk to take full advantage of the spectral properties of nearly uncoupled Markov chains is performed on CSEG,which allows for full exploration of both similar exercises that students have finished and connections between students(exercises)with similar portraits.Finally,we propose to optimize the recommendation list to obtain different exercise suggestions.After analyses of two public datasets,the results demonstrated that PERP can satisfy novelty,accuracy,and diversity.展开更多
Developing effective and long-term treatment strategies for rare and complex neurodegenerative diseases is challenging. One of the major roadblocks is the extensive heterogeneity among patients. This hinders understan...Developing effective and long-term treatment strategies for rare and complex neurodegenerative diseases is challenging. One of the major roadblocks is the extensive heterogeneity among patients. This hinders understanding the underlying disease-causing mechanisms and building solutions that have implications for a broad spectrum of patients. One potential solution is to develop personalized medicine approaches based on strategies that target the most prevalent cellular events that are perturbed in patients. Especially in patients with a known genetic mutation, it may be possible to understand how these mutations contribute to problems that lead to neurodegeneration. Protein–protein interaction analyses offer great advantages for revealing how proteins interact, which cellular events are primarily involved in these interactions, and how they become affected when key genes are mutated in patients. This line of investigation also suggests novel druggable targets for patients with different mutations. Here, we focus on alsin and spastin, two proteins that are identified as “causative” for amyotrophic lateral sclerosis and hereditary spastic paraplegia, respectively, when mutated. Our review analyzes the protein interactome for alsin and spastin, the canonical pathways that are primarily important for each protein domain, as well as compounds that are either Food and Drug Administration–approved or are in active clinical trials concerning the affected cellular pathways. This line of research begins to pave the way for personalized medicine approaches that are desperately needed for rare neurodegenerative diseases that are complex and heterogeneous.展开更多
Medical Internet of Things(IoT)devices are becoming more and more common in healthcare.This has created a huge need for advanced predictive health modeling strategies that can make good use of the growing amount of mu...Medical Internet of Things(IoT)devices are becoming more and more common in healthcare.This has created a huge need for advanced predictive health modeling strategies that can make good use of the growing amount of multimodal data to find potential health risks early and help individuals in a personalized way.Existing methods,while useful,have limitations in predictive accuracy,delay,personalization,and user interpretability,requiring a more comprehensive and efficient approach to harness modern medical IoT devices.MAIPFE is a multimodal approach integrating pre-emptive analysis,personalized feature selection,and explainable AI for real-time health monitoring and disease detection.By using AI for early disease detection,personalized health recommendations,and transparency,healthcare will be transformed.The Multimodal Approach Integrating Pre-emptive Analysis,Personalized Feature Selection,and Explainable AI(MAIPFE)framework,which combines Firefly Optimizer,Recurrent Neural Network(RNN),Fuzzy C Means(FCM),and Explainable AI,improves disease detection precision over existing methods.Comprehensive metrics show the model’s superiority in real-time health analysis.The proposed framework outperformed existing models by 8.3%in disease detection classification precision,8.5%in accuracy,5.5%in recall,2.9%in specificity,4.5%in AUC(Area Under the Curve),and 4.9%in delay reduction.Disease prediction precision increased by 4.5%,accuracy by 3.9%,recall by 2.5%,specificity by 3.5%,AUC by 1.9%,and delay levels decreased by 9.4%.MAIPFE can revolutionize healthcare with preemptive analysis,personalized health insights,and actionable recommendations.The research shows that this innovative approach improves patient outcomes and healthcare efficiency in the real world.展开更多
Personalized gait curves are generated to enhance patient adaptability to gait trajectories used for passive training in the early stage of rehabilitation for hemiplegic patients.The article utilizes the random forest...Personalized gait curves are generated to enhance patient adaptability to gait trajectories used for passive training in the early stage of rehabilitation for hemiplegic patients.The article utilizes the random forest algorithm to construct a gait parameter model,which maps the relationship between parameters such as height,weight,age,gender,and gait speed,achieving prediction of key points on the gait curve.To enhance prediction accuracy,an attention mechanism is introduced into the algorithm to focus more on the main features.Meanwhile,to ensure high similarity between the reconstructed gait curve and the normal one,probabilistic motion primitives(ProMP)are used to learn the probability distribution of normal gait data and construct a gait trajectorymodel.Finally,using the specified step speed as input,select a reference gait trajectory from the learned trajectory,and reconstruct the curve of the reference trajectoryusing the gait keypoints predictedby the parametermodel toobtain the final curve.Simulation results demonstrate that the method proposed in this paper achieves 98%and 96%curve correlations when generating personalized lower limb gait curves for different patients,respectively,indicating its suitability for such tasks.展开更多
A diverse array of microbes in and on the human body constitute the microbiota.These micro-residents continuously interact with the human host through the language of metabolites to dictate the host’s physiology in h...A diverse array of microbes in and on the human body constitute the microbiota.These micro-residents continuously interact with the human host through the language of metabolites to dictate the host’s physiology in health and illnesses.Any biotic and abiotic component ensuring a balanced host-microbiota interaction are potential microbiome therapeutic agents to overcome human diseases.Plant metabolites are continually being used to treat various illnesses.These metabolites target the host’s metabolic machinery and host-gut microbiota interactions to overcome human diseases.Despite the paramount therapeutic significance of the factors affecting host-microbiota interactions,a comprehensive overview of the modulatory role of plant-derived metabolites in host-microbiota interactions is lacking.The current review puts an effort into comprehending the role of medicinal plants in gut microbiota modulation to mitigate various human illnesses.It would develop a holistic understanding of hostmicrobiota interactions and the role of effectors in health and diseases.展开更多
文摘The intellectual heritage of modernity needs rethinking. It is marked by radical humanism and implied by the ideas of Descartes and Kant above all, which introduces an unbridgeable gap between animals and human persons (nonhuman and human animals). Intuitive sensibility to the question of the welfare of nonhuman animals meets a theoretical ally in the rapidly growing knowledge on their subjectivity and makes us pose a questions about their ontological status. This context arouses a possibility of a turn to personalist ethics, yet not to its anthropocentric version implied by Kant, but to personalism conceived of as an instance of value ethics as exemplified by Antonio Rosmini and Karol Wojtyta (John Paul II).
基金support from the Research Grants Council of the Hong Kong Special Administrative Region,China(PolyU152052/21E)Green Tech Fund of Hong Kong(Project No.:GTF202220106)+1 种基金Innovation and Technology Fund of the Hong Kong Special Administrative Region,China(ITP/018/21TP)PolyU Endowed Young Scholars Scheme(Project No.:84CC).
文摘Maintaining thermal comfort within the human body is crucial for optimal health and overall well-being.By merely broadening the setpoint of indoor temperatures,we could significantly slash energy usage in building heating,ventilation,and air-conditioning systems.In recent years,there has been a surge in advancements in personal thermal management(PTM),aiming to regulate heat and moisture transfer within our immediate surroundings,clothing,and skin.The advent of PTM is driven by the rapid development in nano/micro-materials and energy science and engineering.An emerging research area in PTM is personal radiative thermal management(PRTM),which demonstrates immense potential with its high radiative heat transfer efficiency and ease of regulation.However,it is less taken into account in traditional textiles,and there currently lies a gap in our knowledge and understanding of PRTM.In this review,we aim to present a thorough analysis of advanced textile materials and technologies for PRTM.Specifically,we will introduce and discuss the underlying radiation heat transfer mechanisms,fabrication methods of textiles,and various indoor/outdoor applications in light of their different regulation functionalities,including radiative cooling,radiative heating,and dual-mode thermoregulation.Furthermore,we will shine a light on the current hurdles,propose potential strategies,and delve into future technology trends for PRTM with an emphasis on functionalities and applications.
基金provided by the National Natural Science Foundation of China (Grant 32071491, 31772465, 31672299, 31572271, and 32260128)the Natural Sciences Foundation of the Tibetan (XZ202101ZR0051G)。
文摘Two questions in the research of animal personality—whether there is a correlation between a personality trait and individual reproductive success,and what is the genetic basis underlying a personality trait—remain unresolved.We addressed these two questions in three shrub-nesting birds,the Azure-winged Magpie(Cyanopica cyanus,AM),White-collared Blackbird(Turdus albocinctus,WB),and Brown-cheeked Laughingthrush(Trochalopteron henrici,BL).The personality type of an individual was first identified according to its response to a territorial intruder.Then,we compared the fleeing distance,breeding parameters,and differential expressed genes(DEGs) in the brain transcriptome between bold and shy breeders.In the three species,bold breeders exhibited more aggressiveness towards an intruder of their territory than did shy breeders.The reproductive success of bold breeders was significantly higher than that of shy breeders in AM but not in WB and BL.The three species shared one DEG,crabp1,which was up-regulated in bold relative to in shy individuals.By regulating the expression of corticotropin-releasing hormone,higher crabp1 gene expression can decrease cellular response to retinoic acid.Therefore,bold individuals are insensitive to external stresses and able to exhibit more aggressiveness to intruders than their shier counterparts.Aggressiveness is beneficial to bold individuals in AM but not in WB and BL because the former could evoke neighbors to make the same response of defending against intruders but the latter could not.Although a personality trait may have the same genetic basis across species,its correlation with reproductive success depends largely on the life history style of a species.
基金This work was supported by the Natural Science Foundation of Guangdong Province(Grant No.2019A1515011354).
文摘Genome sequencing has revealed frequent mutations in Ras homolog family member A(RHOA)among various cancers with unique aberrant profiles and pathogenic effects,especially in peripheral T-cell lymphoma(PTCL).The discrete positional distribution and types of RHOA amino acid substitutions vary according to the tumor type,thereby leading to different functional and biological properties,which provide new insight into the molecular pathogenesis and potential targeted therapies for various tumors.However,the similarities and discrepancies in characteristics of RHOA mutations among various histologic subtypes of PTCL have not been fully elucidated.Herein we highlight the inconsistencies and complexities of the type and location of RHOA mutations and demonstrate the contribution of RHOA variants to the pathogenesis of PTCL by combining epigenetic abnormalities and activating multiple downstream pathways.The promising potential of targeting RHOA as a therapeutic modality is also outlined.This review provides new insight in the field of personalized medicine to improve the clinical outcomes for patients.
基金supported in part by the Natural Science Foundation of Xinjiang Uygur Autonomous Region(Grant No.2022D01B186 and No.2022D01B05)。
文摘The attention mechanism can extract salient features in images,which has been proved to be effective in improving the performance of person re-identification(Re-ID).However,most of the existing attention modules have the following two shortcomings:On the one hand,they mostly use global average pooling to generate context descriptors,without highlighting the guiding role of salient information on descriptor generation,resulting in insufficient ability of the final generated attention mask representation;On the other hand,the design of most attention modules is complicated,which greatly increases the computational cost of the model.To solve these problems,this paper proposes an attention module called self-supervised recalibration(SR)block,which introduces both global and local information through adaptive weighted fusion to generate a more refined attention mask.In particular,a special"Squeeze-Excitation"(SE)unit is designed in the SR block to further process the generated intermediate masks,both for nonlinearizations of the features and for constraint of the resulting computation by controlling the number of channels.Furthermore,we combine the most commonly used Res Net-50 to construct the instantiation model of the SR block,and verify its effectiveness on multiple Re-ID datasets,especially the mean Average Precision(m AP)on the Occluded-Duke dataset exceeds the state-of-the-art(SOTA)algorithm by 4.49%.
基金the Natural Science Foundation of Beijing Municipality(2222075)National Natural Science Foundation of China(22279010,21671020,51673026)Analysis&Testing Center,Beijing Institute of Technology.
文摘Moisture-enabled electricity(ME)is a method of converting the potential energy of water in the external environment into electrical energy through the interaction of functional materials with water molecules and can be directly applied to energy harvesting and signal expression.However,ME can be unreliable in numerous applications due to its sluggish response to moisture,thus sacrificing the value of fast energy harvesting and highly accurate information representation.Here,by constructing a moisture-electric-moisture-sensitive(ME-MS)heterostructure,we develop an efficient ME generator with ultra-fast electric response to moisture achieved by triggering Grotthuss protons hopping in the sensitized ZnO,which modulates the heterostructure built-in interfacial potential,enables quick response(0.435 s),an unprecedented ultra-fast response rate of 972.4 mV s^(−1),and a durable electrical signal output for 8 h without any attenuation.Our research provides an efficient way to generate electricity and important insight for a deeper understanding of the mechanisms of moisture-generated carrier migration in ME generator,which has a more comprehensive working scene and can serve as a typical model for human health monitoring and smart medical electronics design.
基金the Competitive Research Fund of the University of Aizu,Japan.
文摘Person identification is one of the most vital tasks for network security. People are more concerned about theirsecurity due to traditional passwords becoming weaker or leaking in various attacks. In recent decades, fingerprintsand faces have been widely used for person identification, which has the risk of information leakage as a resultof reproducing fingers or faces by taking a snapshot. Recently, people have focused on creating an identifiablepattern, which will not be reproducible falsely by capturing psychological and behavioral information of a personusing vision and sensor-based techniques. In existing studies, most of the researchers used very complex patternsin this direction, which need special training and attention to remember the patterns and failed to capturethe psychological and behavioral information of a person properly. To overcome these problems, this researchdevised a novel dynamic hand gesture-based person identification system using a Leap Motion sensor. Thisstudy developed two hand gesture-based pattern datasets for performing the experiments, which contained morethan 500 samples, collected from 25 subjects. Various static and dynamic features were extracted from the handgeometry. Randomforest was used to measure feature importance using the Gini Index. Finally, the support vectormachinewas implemented for person identification and evaluate its performance using identification accuracy. Theexperimental results showed that the proposed system produced an identification accuracy of 99.8% for arbitraryhand gesture-based patterns and 99.6% for the same dynamic hand gesture-based patterns. This result indicatedthat the proposed system can be used for person identification in the field of security.
基金supported in part by the National Natural Science Foundation of China under Grant U1905211,Grant 61872088,Grant 62072109,Grant 61872090,and Grant U1804263in part by the Guangxi Key Laboratory of Trusted Software under Grant KX202042+3 种基金in part by the Science and Technology Major Support Program of Guizhou Province under Grant 20183001in part by the Science and Technology Program of Guizhou Province under Grant 20191098in part by the Project of High-level Innovative Talents of Guizhou Province under Grant 20206008in part by the Open Research Fund of Key Laboratory of Cryptography of Zhejiang Province under Grant ZCL21015.
文摘With the maturity and development of 5G field,Mobile Edge CrowdSensing(MECS),as an intelligent data collection paradigm,provides a broad prospect for various applications in IoT.However,sensing users as data uploaders lack a balance between data benefits and privacy threats,leading to conservative data uploads and low revenue or excessive uploads and privacy breaches.To solve this problem,a Dynamic Privacy Measurement and Protection(DPMP)framework is proposed based on differential privacy and reinforcement learning.Firstly,a DPM model is designed to quantify the amount of data privacy,and a calculation method for personalized privacy threshold of different users is also designed.Furthermore,a Dynamic Private sensing data Selection(DPS)algorithm is proposed to help sensing users maximize data benefits within their privacy thresholds.Finally,theoretical analysis and ample experiment results show that DPMP framework is effective and efficient to achieve a balance between data benefits and sensing user privacy protection,in particular,the proposed DPMP framework has 63%and 23%higher training efficiency and data benefits,respectively,compared to the Monte Carlo algorithm.
文摘Lung cancer is the most prevalent cancer diagnosis and the leading cause of cancer death worldwide.Therapeutic failure in lung cancer(LUAD)is heavily influenced by drug resistance.This challenge stems from the diverse cell populations within the tumor,each having unique genetic,epigenetic,and phenotypic profiles.Such variations lead to varied therapeutic responses,thereby contributing to tumor relapse and disease progression.Methods:The Genomics of Drug Sensitivity in Cancer(GDSC)database was used in this investigation to obtain the mRNA expression dataset,genomic mutation profile,and drug sensitivity information of NSCLS.Machine Learning(ML)methods,including Random Forest(RF),Artificial Neurol Network(ANN),and Support Vector Machine(SVM),were used to predict the response status of each compound based on the mRNA and mutation characteristics determined using statistical methods.The most suitable method for each drug was proposed by comparing the prediction accuracy of different ML methods,and the selected mRNA and mutation characteristics were identified as molecular features for the drug-responsive cancer subtype.Finally,the prognostic influence of molecular features on the mutational subtype of LUAD in publicly available datasets.Results:Our analyses yielded 1,564 gene features and 45 mutational features for 46 drugs.Applying the ML approach to predict the drug response for each medication revealed an upstanding performance for SVM in predicting Afuresertib drug response(area under the curve[AUC]0.875)using CIT,GAS2L3,STAG3L3,ATP2B4-mut,and IL15RA-mut as molecular features.Furthermore,the ANN algorithm using 9 mRNA characteristics demonstrated the highest prediction performance(AUC 0.780)in Gefitinib with CCL23-mut.Conclusion:This work extensively investigated the mRNA and mutation signatures associated with drug response in LUAD using a machine-learning approach and proposed a priority algorithm to predict drug response for different drugs.
基金We acknowledge funding from National Natural Science Foundation of China under Grants Nos.62101213,62103165the Shandong Provincial Natural Science Foundation under Grant Nos.ZR2020QF107,ZR2020MF137,ZR2021QF043.
文摘Video-based person re-identification(Re-ID),a subset of retrieval tasks,faces challenges like uncoordinated sample capturing,viewpoint variations,occlusions,cluttered backgrounds,and sequence uncertainties.Recent advancements in deep learning have significantly improved video-based person Re-ID,laying a solid foundation for further progress in the field.In order to enrich researchers’insights into the latest research findings and prospective developments,we offer an extensive overview and meticulous analysis of contemporary video-based person ReID methodologies,with a specific emphasis on network architecture design and loss function design.Firstly,we introduce methods based on network architecture design and loss function design from multiple perspectives,and analyzes the advantages and disadvantages of these methods.Furthermore,we provide a synthesis of prevalent datasets and key evaluation metrics utilized within this field to assist researchers in assessing methodological efficacy and establishing benchmarks for performance evaluation.Lastly,through a critical evaluation of the experimental outcomes derived from various methodologies across four prominent public datasets,we identify promising research avenues and offer valuable insights to steer future exploration and innovation in this vibrant and evolving field of video-based person Re-ID.This comprehensive analysis aims to equip researchers with the necessary knowledge and strategic foresight to navigate the complexities of video-based person Re-ID,fostering continued progress and breakthroughs in this challenging yet promising research domain.
文摘In this editorial,we comment on the article by Zhang et al entitled Development of a machine learning-based model for predicting the risk of early postoperative recurrence of hepatocellular carcinoma.Hepatocellular carcinoma(HCC),which is characterized by high incidence and mortality rates,remains a major global health challenge primarily due to the critical issue of postoperative recurrence.Early recurrence,defined as recurrence that occurs within 2 years posttreatment,is linked to the hidden spread of the primary tumor and significantly impacts patient survival.Traditional predictive factors,including both patient-and treatment-related factors,have limited predictive ability with respect to HCC recurrence.The integration of machine learning algorithms is fueled by the exponential growth of computational power and has revolutionized HCC research.The study by Zhang et al demonstrated the use of a groundbreaking preoperative prediction model for early postoperative HCC recurrence.Challenges persist,including sample size constraints,issues with handling data,and the need for further validation and interpretability.This study emphasizes the need for collaborative efforts,multicenter studies and comparative analyses to validate and refine the model.Overcoming these challenges and exploring innovative approaches,such as multi-omics integration,will enhance personalized oncology care.This study marks a significant stride toward precise,efficient,and personalized oncology practices,thus offering hope for improved patient outcomes in the field of HCC treatment.
基金MMU Postdoctoral and Research Fellow(Account:MMUI/230023.02).
文摘Handwriting is a unique and significant human feature that distinguishes them from one another.There are many researchers have endeavored to develop writing recognition systems utilizing specific signatures or symbols for person identification through verification.However,such systems are susceptible to forgery,posing security risks.In response to these challenges,we propose an innovative hybrid technique for individual identification based on independent handwriting,eliminating the reliance on specific signatures or symbols.In response to these challenges,we propose an innovative hybrid technique for individual identification based on independent handwriting,eliminating the reliance on specific signatures or symbols.Our innovative method is intricately designed,encompassing five distinct phases:data collection,preprocessing,feature extraction,significant feature selection,and classification.One key advancement lies in the creation of a novel dataset specifically tailored for Bengali handwriting(BHW),setting the foundation for our comprehensive approach.Post-preprocessing,we embarked on an exhaustive feature extraction process,encompassing integration with kinematic,statistical,spatial,and composite features.This meticulous amalgamation resulted in a robust set of 91 features.To enhance the efficiency of our system,we employed an analysis of variance(ANOVA)F test and mutual information scores approach,meticulously selecting the most pertinent features.In the identification phase,we harnessed the power of cutting-edge deep learning models,notably the Convolutional Neural Network(CNN)and Bidirectional Long Short-Term Memory(BiLSTM).These models underwent rigorous training and testing to accurately discern individuals based on their handwriting characteristics.Moreover,our methodology introduces a groundbreaking hybrid model that synergizes CNN and BiLSTM,capitalizing on fine motor features for enhanced individual classifications.Crucially,our experimental results underscore the superiority of our approach.The CNN,BiLSTM,and hybrid models exhibited superior performance in individual classification when compared to prevailing state-of-the-art techniques.This validates our method’s efficacy and underscores its potential to outperform existing technologies,marking a significant stride forward in the realm of individual identification through handwriting analysis.
文摘Gastric cancer ranks as the sixth most prevalent cancer worldwide.In recent research within the realm of gastric cancer treatment,the identification and application of immune-related genetic features have emerged as groundbreaking advancements.The study by Ma et al,which developed a prognostic model based on 10 genes,categorizes patients into high and low-risk groups to predict their responsiveness to immune checkpoint inhibitor therapy.This research underscores the potential of immune-related genes as biomarkers for personalized treatment,offering insights into tumor mutation burden and immune phenotype scores.We advocate for further validation,understanding of biological mechanisms,and integration of diverse datasets to enhance the model's predictive accuracy and clinical application,marking a significant step towards personalized and precise treatment for gastric cancer.
基金This work has been partially supported by FEDER and the State Research Agency(AEI)of the Spanish Ministry of Economy and Competition under Grant SAFER:PID2019-104735RB-C42(AEI/FEDER,UE)the General Subdirection for Gambling Regulation of the Spanish ConsumptionMinistry under the Grant Detec-EMO:SUBV23/00010the Project PLEC2021-007681 funded by MCIN/AEI/10.13039/501100011033 and by the European Union NextGenerationEU/PRTR.
文摘Personality recognition plays a pivotal role when developing user-centric solutions such as recommender systems or decision support systems across various domains,including education,e-commerce,or human resources.Tra-ditional machine learning techniques have been broadly employed for personality trait identification;nevertheless,the development of new technologies based on deep learning has led to new opportunities to improve their performance.This study focuses on the capabilities of pre-trained language models such as BERT,RoBERTa,ALBERT,ELECTRA,ERNIE,or XLNet,to deal with the task of personality recognition.These models are able to capture structural features from textual content and comprehend a multitude of language facets and complex features such as hierarchical relationships or long-term dependencies.This makes them suitable to classify multi-label personality traits from reviews while mitigating computational costs.The focus of this approach centers on developing an architecture based on different layers able to capture the semantic context and structural features from texts.Moreover,it is able to fine-tune the previous models using the MyPersonality dataset,which comprises 9,917 status updates contributed by 250 Facebook users.These status updates are categorized according to the well-known Big Five personality model,setting the stage for a comprehensive exploration of personality traits.To test the proposal,a set of experiments have been performed using different metrics such as the exact match ratio,hamming loss,zero-one-loss,precision,recall,F1-score,and weighted averages.The results reveal ERNIE is the top-performing model,achieving an exact match ratio of 72.32%,an accuracy rate of 87.17%,and 84.41%of F1-score.The findings demonstrate that the tested models substantially outperform other state-of-the-art studies,enhancing the accuracy by at least 3%and confirming them as powerful tools for personality recognition.These findings represent substantial advancements in personality recognition,making them appropriate for the development of user-centric applications.
基金supported by the Industrial Support Project of Gansu Colleges under Grant No.2022CYZC-11Gansu Natural Science Foundation Project under Grant No.21JR7RA114+1 种基金National Natural Science Foundation of China under Grants No.622760736,No.1762078,and No.61363058Northwest Normal University Teachers Research Capacity Promotion Plan under Grant No.NWNU-LKQN2019-2.
文摘The exercise recommendation system is emerging as a promising application in online learning scenarios,providing personalized recommendations to assist students with explicit learning directions.Existing solutions generally follow a collaborative filtering paradigm,while the implicit connections between students(exercises)have been largely ignored.In this study,we aim to propose an exercise recommendation paradigm that can reveal the latent connections between student-student(exercise-exercise).Specifically,a new framework was proposed,namely personalized exercise recommendation with student and exercise portraits(PERP).It consists of three sequential and interdependent modules:Collaborative student exercise graph(CSEG)construction,joint random walk,and recommendation list optimization.Technically,CSEG is created as a unified heterogeneous graph with students’response behaviors and student(exercise)relationships.Then,a joint random walk to take full advantage of the spectral properties of nearly uncoupled Markov chains is performed on CSEG,which allows for full exploration of both similar exercises that students have finished and connections between students(exercises)with similar portraits.Finally,we propose to optimize the recommendation list to obtain different exercise suggestions.After analyses of two public datasets,the results demonstrated that PERP can satisfy novelty,accuracy,and diversity.
基金funded by NIH-NIA R01AG061708 (to PHO)Patrick Grange Memorial Foundation (to PHO)+1 种基金A Long Swim (to PHO)CureSPG4 Foundation (to PHO)。
文摘Developing effective and long-term treatment strategies for rare and complex neurodegenerative diseases is challenging. One of the major roadblocks is the extensive heterogeneity among patients. This hinders understanding the underlying disease-causing mechanisms and building solutions that have implications for a broad spectrum of patients. One potential solution is to develop personalized medicine approaches based on strategies that target the most prevalent cellular events that are perturbed in patients. Especially in patients with a known genetic mutation, it may be possible to understand how these mutations contribute to problems that lead to neurodegeneration. Protein–protein interaction analyses offer great advantages for revealing how proteins interact, which cellular events are primarily involved in these interactions, and how they become affected when key genes are mutated in patients. This line of investigation also suggests novel druggable targets for patients with different mutations. Here, we focus on alsin and spastin, two proteins that are identified as “causative” for amyotrophic lateral sclerosis and hereditary spastic paraplegia, respectively, when mutated. Our review analyzes the protein interactome for alsin and spastin, the canonical pathways that are primarily important for each protein domain, as well as compounds that are either Food and Drug Administration–approved or are in active clinical trials concerning the affected cellular pathways. This line of research begins to pave the way for personalized medicine approaches that are desperately needed for rare neurodegenerative diseases that are complex and heterogeneous.
文摘Medical Internet of Things(IoT)devices are becoming more and more common in healthcare.This has created a huge need for advanced predictive health modeling strategies that can make good use of the growing amount of multimodal data to find potential health risks early and help individuals in a personalized way.Existing methods,while useful,have limitations in predictive accuracy,delay,personalization,and user interpretability,requiring a more comprehensive and efficient approach to harness modern medical IoT devices.MAIPFE is a multimodal approach integrating pre-emptive analysis,personalized feature selection,and explainable AI for real-time health monitoring and disease detection.By using AI for early disease detection,personalized health recommendations,and transparency,healthcare will be transformed.The Multimodal Approach Integrating Pre-emptive Analysis,Personalized Feature Selection,and Explainable AI(MAIPFE)framework,which combines Firefly Optimizer,Recurrent Neural Network(RNN),Fuzzy C Means(FCM),and Explainable AI,improves disease detection precision over existing methods.Comprehensive metrics show the model’s superiority in real-time health analysis.The proposed framework outperformed existing models by 8.3%in disease detection classification precision,8.5%in accuracy,5.5%in recall,2.9%in specificity,4.5%in AUC(Area Under the Curve),and 4.9%in delay reduction.Disease prediction precision increased by 4.5%,accuracy by 3.9%,recall by 2.5%,specificity by 3.5%,AUC by 1.9%,and delay levels decreased by 9.4%.MAIPFE can revolutionize healthcare with preemptive analysis,personalized health insights,and actionable recommendations.The research shows that this innovative approach improves patient outcomes and healthcare efficiency in the real world.
基金supported by Guizhou Provincial Department of Science and Technology(Guizhou Science and Technology Cooperation Support[2021]General 442)Guizhou Provincial Department of Science and Technology(Guizhou Science and Technology Cooperation Support[2023]General 179)Guizhou Provincial Department of Science and Technology(Guizhou Science and Technology Cooperation Support[2023]General 096).
文摘Personalized gait curves are generated to enhance patient adaptability to gait trajectories used for passive training in the early stage of rehabilitation for hemiplegic patients.The article utilizes the random forest algorithm to construct a gait parameter model,which maps the relationship between parameters such as height,weight,age,gender,and gait speed,achieving prediction of key points on the gait curve.To enhance prediction accuracy,an attention mechanism is introduced into the algorithm to focus more on the main features.Meanwhile,to ensure high similarity between the reconstructed gait curve and the normal one,probabilistic motion primitives(ProMP)are used to learn the probability distribution of normal gait data and construct a gait trajectorymodel.Finally,using the specified step speed as input,select a reference gait trajectory from the learned trajectory,and reconstruct the curve of the reference trajectoryusing the gait keypoints predictedby the parametermodel toobtain the final curve.Simulation results demonstrate that the method proposed in this paper achieves 98%and 96%curve correlations when generating personalized lower limb gait curves for different patients,respectively,indicating its suitability for such tasks.
基金financial support under Maharshi Dayanand University Rohtak for a Post-Seed Research Grant(DRD/23/75)sanctioned to Dr.NS Chauhan.
文摘A diverse array of microbes in and on the human body constitute the microbiota.These micro-residents continuously interact with the human host through the language of metabolites to dictate the host’s physiology in health and illnesses.Any biotic and abiotic component ensuring a balanced host-microbiota interaction are potential microbiome therapeutic agents to overcome human diseases.Plant metabolites are continually being used to treat various illnesses.These metabolites target the host’s metabolic machinery and host-gut microbiota interactions to overcome human diseases.Despite the paramount therapeutic significance of the factors affecting host-microbiota interactions,a comprehensive overview of the modulatory role of plant-derived metabolites in host-microbiota interactions is lacking.The current review puts an effort into comprehending the role of medicinal plants in gut microbiota modulation to mitigate various human illnesses.It would develop a holistic understanding of hostmicrobiota interactions and the role of effectors in health and diseases.