In this paper,we present a novel and robust nonlinear precoding(NLP)design and detection structure specifically tailored for multiple-input multipleoutput space division multiple access(MIMO-SDMA)systems toward 6G wir...In this paper,we present a novel and robust nonlinear precoding(NLP)design and detection structure specifically tailored for multiple-input multipleoutput space division multiple access(MIMO-SDMA)systems toward 6G wireless.Our approach aims to effectively mitigate the impact of imperfect channel estimation by leveraging the channel fluctuation mean square error(MSE)for reconstructing a highly accurate precoding matrix at the transmitter.Furthermore,we introduce a simplified receiver structure that eliminates the need for equalization,resulting in reduced interference and notable enhancements in overall system performance.We conduct both computer simulations and experimental tests to validate the efficacy of our proposed approach.The results reveals that the proposed NLP scheme offers significant performance improvements,making it particularly well-suited for the forthcoming 6G wireless.展开更多
In this paper the method and technique of the diagonalization are employed to transform a vector second-order nonlinear system into two first-order approximate diagonalized systems. The existence and the asymptotic be...In this paper the method and technique of the diagonalization are employed to transform a vector second-order nonlinear system into two first-order approximate diagonalized systems. The existence and the asymptotic behavior of the solutions are obtained for a vector second-order nonlinear Robin problem of singular perturbation type.展开更多
Analytical studies on electromagnetoelastic behaviors are presented for the functionally graded piezoelectric material (FGPM) solid cylinder and sphere placed in a uniform magnetic field and subjected to the externa...Analytical studies on electromagnetoelastic behaviors are presented for the functionally graded piezoelectric material (FGPM) solid cylinder and sphere placed in a uniform magnetic field and subjected to the external pressure and electric loading. When the mechanical, electric and magnetic properties of the material obey an identical power law in the radial direction, the exact displacements, stresses, electric potentials and perturbations of magnetic field vector in the FGPM solid cylinder and sphere are obtained by using the infinitesimal theory of electromagnetoelasticity. Numerical examples also show the significant influence of material inhomogeneity. It is interesting to note that selecting a specific value of inhomogeneity parameter β can optimize the electromagnetoelastic responses, which will be of particular importance in modern engineering designs.展开更多
In this paper, the mechanical responses of a thick-walled functionally graded hollow cylinder subject to a uniform magnetic field and inner-pressurized loads are studied. Rather than directly assume the material const...In this paper, the mechanical responses of a thick-walled functionally graded hollow cylinder subject to a uniform magnetic field and inner-pressurized loads are studied. Rather than directly assume the material constants as some specific function forms displayed in pre-studies, we firstly give the volume fractions of different constituents of the functionally graded material(FGM) cylinder and then determine the expressions of the material constants. With the use of the Voigt method, the corresponding analytical solutions of displacements in the radial direction, the strain and stress components, and the perturbation magnetic field vector are derived. In the numerical part, the effects of the volume fraction on the displacement, strain and stress components, and the magnetic perturbation field vector are investigated. Moreover, by some appropriate choices of the material constants, we find that the obtained results in this paper can reduce to some special cases given in the previous studies.展开更多
This paper presents an analytical solution for the interaction of electric potentials, electric displacements, elastic deformations, and thermoelasticity, and describes electromagnetoelastic responses and perturbation...This paper presents an analytical solution for the interaction of electric potentials, electric displacements, elastic deformations, and thermoelasticity, and describes electromagnetoelastic responses and perturbation of the magnetic field vector in hollow structures (cylinder or sphere), subjected to mechanical load and electric potential. The material properties, thermal expansion coefficient and magnetic permeability of the structure are assumed to be graded in the radial direction by a power law distribution. In the present model we consider the solution for the case of a hollow structure made of viscoelastic isotropic material, reinforced by elastic isotropic fibers, this material is considered as structurally anisotropic material. The exact solutions for stresses and perturbations of the magnetic field vector in FGM hollow structures are determined using the infinitesimal theory of magnetothermoelasticity, and then the hollow structure model with viscoelastic material is solved using the correspondence principle and Illyushin's approximation method. Finally, numerical results are carried out and discussed.展开更多
In this paper, we obtain some stability results for perturbed vector equilibrium problems. Under new assumptions, which are weaker than the assumption of C-strict monotonicity, we provide sufficient conditions for the...In this paper, we obtain some stability results for perturbed vector equilibrium problems. Under new assumptions, which are weaker than the assumption of C-strict monotonicity, we provide sufficient conditions for the Painlev^-Kuratowski Convergence of the weak efficient solution sets and efficient solution sets for the perturbed vector equilibrium problems with a sequence of mappings converging in real linear metric spaces. These results extend and improve some known results in the literature.展开更多
基金supported in part by National Key R&D Program of China(2020YFB1807203)National Science Foundation of China under Grant number 62071111+2 种基金the Fundamental Research Funds for the Central Universities under Grant 2242022k60006Natural Science Foundation of Sichuan Province under Grant number 2022NSFSC0487the National Key Laboratory of Wireless Communications Foundation under Grant IFN20230104。
文摘In this paper,we present a novel and robust nonlinear precoding(NLP)design and detection structure specifically tailored for multiple-input multipleoutput space division multiple access(MIMO-SDMA)systems toward 6G wireless.Our approach aims to effectively mitigate the impact of imperfect channel estimation by leveraging the channel fluctuation mean square error(MSE)for reconstructing a highly accurate precoding matrix at the transmitter.Furthermore,we introduce a simplified receiver structure that eliminates the need for equalization,resulting in reduced interference and notable enhancements in overall system performance.We conduct both computer simulations and experimental tests to validate the efficacy of our proposed approach.The results reveals that the proposed NLP scheme offers significant performance improvements,making it particularly well-suited for the forthcoming 6G wireless.
文摘In this paper the method and technique of the diagonalization are employed to transform a vector second-order nonlinear system into two first-order approximate diagonalized systems. The existence and the asymptotic behavior of the solutions are obtained for a vector second-order nonlinear Robin problem of singular perturbation type.
基金The project supported by China postdoctoral science foundation(20060390260)Hunan Postdoctoral Scientific ProgramThe English text was polished by Yunming Chen.
文摘Analytical studies on electromagnetoelastic behaviors are presented for the functionally graded piezoelectric material (FGPM) solid cylinder and sphere placed in a uniform magnetic field and subjected to the external pressure and electric loading. When the mechanical, electric and magnetic properties of the material obey an identical power law in the radial direction, the exact displacements, stresses, electric potentials and perturbations of magnetic field vector in the FGPM solid cylinder and sphere are obtained by using the infinitesimal theory of electromagnetoelasticity. Numerical examples also show the significant influence of material inhomogeneity. It is interesting to note that selecting a specific value of inhomogeneity parameter β can optimize the electromagnetoelastic responses, which will be of particular importance in modern engineering designs.
基金supported by the National Natural Science Foundation of China(No.11772041)
文摘In this paper, the mechanical responses of a thick-walled functionally graded hollow cylinder subject to a uniform magnetic field and inner-pressurized loads are studied. Rather than directly assume the material constants as some specific function forms displayed in pre-studies, we firstly give the volume fractions of different constituents of the functionally graded material(FGM) cylinder and then determine the expressions of the material constants. With the use of the Voigt method, the corresponding analytical solutions of displacements in the radial direction, the strain and stress components, and the perturbation magnetic field vector are derived. In the numerical part, the effects of the volume fraction on the displacement, strain and stress components, and the magnetic perturbation field vector are investigated. Moreover, by some appropriate choices of the material constants, we find that the obtained results in this paper can reduce to some special cases given in the previous studies.
文摘This paper presents an analytical solution for the interaction of electric potentials, electric displacements, elastic deformations, and thermoelasticity, and describes electromagnetoelastic responses and perturbation of the magnetic field vector in hollow structures (cylinder or sphere), subjected to mechanical load and electric potential. The material properties, thermal expansion coefficient and magnetic permeability of the structure are assumed to be graded in the radial direction by a power law distribution. In the present model we consider the solution for the case of a hollow structure made of viscoelastic isotropic material, reinforced by elastic isotropic fibers, this material is considered as structurally anisotropic material. The exact solutions for stresses and perturbations of the magnetic field vector in FGM hollow structures are determined using the infinitesimal theory of magnetothermoelasticity, and then the hollow structure model with viscoelastic material is solved using the correspondence principle and Illyushin's approximation method. Finally, numerical results are carried out and discussed.
基金Supported by the National Natural Science Foundation of China(No.11301571.11271389.11271391)the Natural Science Foundation Project of ChongQing(No.CSTC,2012jjA00016.2011BA0030)the Education Committee Research Foundation of ChongQing(KJ130428)
文摘In this paper, we obtain some stability results for perturbed vector equilibrium problems. Under new assumptions, which are weaker than the assumption of C-strict monotonicity, we provide sufficient conditions for the Painlev^-Kuratowski Convergence of the weak efficient solution sets and efficient solution sets for the perturbed vector equilibrium problems with a sequence of mappings converging in real linear metric spaces. These results extend and improve some known results in the literature.