A class of matrix inverse problems minimizing ‖A-‖ F on the linear manifold l A={A∈R n×m |‖AX-B‖ F=min} is considered. The perturbation analysis of the solution to these problems is carried out. Th...A class of matrix inverse problems minimizing ‖A-‖ F on the linear manifold l A={A∈R n×m |‖AX-B‖ F=min} is considered. The perturbation analysis of the solution to these problems is carried out. The perturbation upper bounds of the solution are given for both the consistent and inconsistent cases. The obtained preturbation upper bounds are with respect to the distance from the perturbed solution to the unperturbed manifold.展开更多
The magneto-plastic instability of a ferromagnetic beam-type plate with simple supports and small initial imperfection is analytically investigated in this paper for that the plastic deformation of the plate with a ...The magneto-plastic instability of a ferromagnetic beam-type plate with simple supports and small initial imperfection is analytically investigated in this paper for that the plastic deformation of the plate with a linear-strain hardening relation is considered when the plate is located in a strong uniformly distributed magnetic ?eld. After the distribution of magnetic ?elds related to the de?ected con?guration of plate is imaginably divided into two parts, i.e., one is related to the ?at plate and the other dependent on the perturbation of magnetic ?elds for which the plate con?guration changes from the ?at into the deformed state, the perturbation technique is employed to analyze the distribution of the perturbation magnetic ?elds in and out-of the magnetic medium of the ferromagnetic structure in a transverse magnetic ?eld, which leads to some analytical formulae/solutions for the magnetic ?elds and the resulting magnetic force exerted on the plate. Based on them, the magneto-plastic buckling and snapping of the plate in a transverse magnetic ?eld is discussed, and the critical magnetic ?eld is analytically formulated in terms of the parameters of geometry and material of the plate employed by solving the governing equation of the magneto-plastic plate in the applied magnetic ?eld. Further, the sensitivity of the initial imperfection on the magneto-plastic instability, expressed by an ampli?cation function, is obtained by solving the dynamic equation of de?ection of the plate after the inertial force in the transverse direction is taken into account. The results obtained show that the critical magnetic ?eld is sensitive to the plastic characteristic, e.g., hardening coe?cient, and the instability mode and de?ection of the plate are dependent on the geometrical imperfection as well.展开更多
Compact accelerator-based neutron source facilities are garnering attention and play an important and expanding role in material and engineering sciences,as well as in neutron science education and training.Neutrons a...Compact accelerator-based neutron source facilities are garnering attention and play an important and expanding role in material and engineering sciences,as well as in neutron science education and training.Neutrons are produced by bombarding a low-energy proton beam onto a beryllium or lithium target.In such an acceleratorbased neutron source,a radio frequency quadrupole(RFQ)is usually utilized to accelerate a high-intensity proton beam to a few MeV.This study mainly covers the highfrequency structure design optimizations of a 4-vane RFQ with pi-mode stabilizer loops(PISLs)and its RF stability analysis.A 176 MHz RFQ accelerator is designed to operate at a 10%duty factor and could accelerate an80 mA proton beam from 65 keV to 2.5 MeV within a length of 5.3 m.The adoption of PISLs ensures high RF stability,eases the operation of the accelerator,and implies less stringent alignment and machining tolerances.展开更多
This paper establishes some perturbation analysis for the tensor inverse,the tensor Moore-Penrose inverse,and the tensor system based on the t-product.In the settings of structured perturbations,we generalize the Sher...This paper establishes some perturbation analysis for the tensor inverse,the tensor Moore-Penrose inverse,and the tensor system based on the t-product.In the settings of structured perturbations,we generalize the Sherman-Morrison-Woodbury(SMW)formula to the t-product tensor scenarios.The SMW formula can be used to perform the sensitivity analy-sis for a multilinear system of equations.展开更多
In this study,an iterative algorithm is proposed to solve the nonlinear matrix equation X+A∗eXA=In.Explicit expressions for mixed and componentwise condition numbers with their upper bounds are derived to measure the ...In this study,an iterative algorithm is proposed to solve the nonlinear matrix equation X+A∗eXA=In.Explicit expressions for mixed and componentwise condition numbers with their upper bounds are derived to measure the sensitivity of the considered nonlinear matrix equation.Comparative analysis for the derived condition numbers and the proposed algorithm are presented.The proposed iterative algorithm reduces the number of iterations significantly when incorporated with exact line searches.Componentwise condition number seems more reliable to detect the sensitivity of the considered equation than mixed condition number as validated by numerical examples.展开更多
In this paper, applying perturbation method to von Karman-type nonlinear large deflection equations of orthotropic plates by taking deflection as perturbation parameter, the postbuckling behavior of simply supported r...In this paper, applying perturbation method to von Karman-type nonlinear large deflection equations of orthotropic plates by taking deflection as perturbation parameter, the postbuckling behavior of simply supported rectangular orthotropic plates under in-plane compression is investigated. Two types of in-plane boundary conditions are now considered and the effects of initial imperfections are also studied. Numerical results are presented for various cases of orthotropic composite plates having different elastic properties. It is found that the results obtained are in good agreement with those of experiments.展开更多
Let X be a Banach space and let P:X→X be a bounded linear operator.Using an algebraic inequality on the spectrum of P,we give a new sufficient condition that guarantees the existence of(I-P)^(-1) as a bounded linear ...Let X be a Banach space and let P:X→X be a bounded linear operator.Using an algebraic inequality on the spectrum of P,we give a new sufficient condition that guarantees the existence of(I-P)^(-1) as a bounded linear operator on X,and a bound on its spectral radius is also obtained.This generalizes the classic Banach lemma.We apply the result to the perturbation analysis of general bounded linear operators on X with commutative perturbations.展开更多
In this paper, we investigate a new perturbation theorem for the Moore-Penrose metric generalized inverses of a bounded linear operator in Banach space. The main tool in this paper is "the generalized Neumann lemma"...In this paper, we investigate a new perturbation theorem for the Moore-Penrose metric generalized inverses of a bounded linear operator in Banach space. The main tool in this paper is "the generalized Neumann lemma" which is quite different from the method in [12] where "the generalized Banach lemma" was used. By the method of the perturba- tion analysis of bounded linear operators, we obtain an explicit perturbation theorem and three inequalities about error estimates for the Moore-Penrose metric generalized inverse of bounded linear operator under the generalized Neumann lemma and the concept of stable perturbations in Banach spaces.展开更多
For surface gravity waves propagating over a horizontal bottom that consists of a patch of sinusoidal ripples,strong wave reflection occurs under the Bragg resonance condition.The critical wave frequency,at which the ...For surface gravity waves propagating over a horizontal bottom that consists of a patch of sinusoidal ripples,strong wave reflection occurs under the Bragg resonance condition.The critical wave frequency,at which the peak reflection coefficient is obtained,has been observed in both physical experiments and direct numerical simulations to be downshifted from the well-known theoretical prediction.It has long been speculated that the downshift may be attributed to higher-order rippled bottom and free-surface boundary effects,but the intrinsic mechanism remains unclear.By a regular perturbation analysis,we derive the theoretical solution of frequency downshift due to third-order nonlinear effects of both bottom and free-surface boundaries.It is found that the bottom nonlinearity plays the dominant role in frequency downshift while the free-surface nonlinearity actually causes frequency upshift.The frequency downshift/upshift has a quadratic dependence in the bottom/free-surface steepness.Polychromatic bottom leads to a larger frequency downshift relative to the monochromatic bottom.In addition,direct numerical simulations based on the high-order spectral method are conducted to validate the present theory.The theoretical solution of frequency downshift compares well with the numerical simulations and available experimental data.展开更多
The dissipative equilibrium dynamics studies the law of fluid motion under constraints in the contact interface of the coupling system. It needs to examine how con- straints act upon the fluid movement, while the flui...The dissipative equilibrium dynamics studies the law of fluid motion under constraints in the contact interface of the coupling system. It needs to examine how con- straints act upon the fluid movement, while the fluid movement reacts to the constraint field. It also needs to examine the coupling fluid field and media within the contact in- terface, and to use the multi-scale analysis to solve the regular and singular perturbation problems in micro-phenomena of laboratories and macro-phenomena of nature. This pa- per describes the field affected by the gravity constraints. Applying the multi-scale anal- ysis to the complex Fourier harmonic analysis, scale changes, and the introduction of new parameters, the complex three-dimensional coupling dynamic equations are transformed into a boundary layer problem in the one-dimensional complex space. Asymptotic analy- sis is carried out for inter and outer solutions to the perturbation characteristic function of the boundary layer equations in multi-field coupling. Examples are given for disturbance analysis in the flow field, showing the turning point from the index oscillation solution to the algebraic solution. With further analysis and calculation on nonlinear eigenfunctions of the contact interface dynamic problems by the eigenvalue relation, an asymptotic per- turbation solution is obtained. Finally, a boundary layer solution to multi-field coupling problems in the contact interface is obtained by asymptotic estimates of eigenvalues for the G-N mode in the large flow limit. Characteristic parameters in the final form of the eigenvalue relation are key factors of the dissipative dynamics in the contact interface.展开更多
The generalized adjoint property and adjoint matching condition for systems that contain discontinuous on/off switches are derived by a perturbation analysis of the Lagranging-form costfunction.
The present study analyzes the reflection and transmission phenomenon of water-waves in a two-layer ice-covered system. The upper layer is covered by an ice-sheet, whereas the bottom of the lower layer is undulated an...The present study analyzes the reflection and transmission phenomenon of water-waves in a two-layer ice-covered system. The upper layer is covered by an ice-sheet, whereas the bottom of the lower layer is undulated and permeable. By using regular perturbation analysis and Fourier transform technique, the problem is solved and the first order reflection and transmission coefficients are determined. It is found that these coefficients depend on the shape as well as the permeability of the undulating bottom. Therefore, from the practical viewpoint, an undulating bottom topography is considered to determine all the aforesaid coefficients. The role of various system parameters, such as porosity, angle of incidence and ice parameters, are discussed to analyze the transformation of incident water wave energy from one layer to another layer. The outcomes are demonstrated in graphical forms.展开更多
1 INTRODUCTIONThe concentration distribution of reactant in porouscatalyst pellet not only is the basis of calculating theeffectiveness factor,but also has a great significancein investigating the reaction and mass tr...1 INTRODUCTIONThe concentration distribution of reactant in porouscatalyst pellet not only is the basis of calculating theeffectiveness factor,but also has a great significancein investigating the reaction and mass transfer in thecatalyst pellet.In principle,the concentration distri-bution and the effectiveness factor of a catalyst pelletcan be obtained by solving the reaction-diffusion equation.However,most of the differential equations haveno analytical solution except for some simple cases.The previous investigators have made great efforts to calculate the effectiveness factors of catalysts.They first obtained asymptotic solutions of effective-ness factor in the cases of the Thiele modulus φ→Oand φ→oo by means of perturbation method,thensynthesized the information of the asymptotic solu-展开更多
Curved channels are ubiquitous in microfluidic systems.The pressure-driven electrokinetic flow and energy conversion in a curved microtube are investigated analytically by using a perturbation analysis method under th...Curved channels are ubiquitous in microfluidic systems.The pressure-driven electrokinetic flow and energy conversion in a curved microtube are investigated analytically by using a perturbation analysis method under the assumptions of the small curvature ratio and the Reynolds number.The results indicate that the curvature of the microtube leads to a skewed pattern in the distribution of the electrical double layer(EDL)potential.The EDL potential at the outer side of the bend is larger than that at the inner side of the bend.The curvature shows an inhibitory effect on the magnitude of the streaming potential field induced by the pressure-driven flow.Since the spanwise pressure gradient is dominant over the inertial force,the resulting axial velocity profile is skewed into the inner region of the curved channel.Furthermore,the flow rate in a curved microtube could be larger than that in a straight one with the same pressure gradient and shape of cross section.The asymptotic solutions of the axial velocity and flow rate in the absence of the electrokinetic effect are in agreement with the classical results for low Reynolds number flows.Remarkably,the curved geometry could be beneficial to improving the electrokinetic energy conversion(EKEC)efficiency.展开更多
In this paper,analytical,computational,and experimental studies are integrated to examine unsteady acoustic/vorticity transport phenomena in a solid rocket motor chamber with end-wall disturbance and side-wall injecti...In this paper,analytical,computational,and experimental studies are integrated to examine unsteady acoustic/vorticity transport phenomena in a solid rocket motor chamber with end-wall disturbance and side-wall injection.Acoustic-fluid dynamic interactions across the chamber may generate intense unsteady vorticity with associated shear stresses.These stresses may cause scouring and,in turn,enhance the heat rate and erosional burning of solid propellant in a real rocket chamber.In this modelling,the unsteady propellant gasification is mimicked by steady-state flow disturbed by end-wall oscillations.The analytical approach is formulated using an asymptotic technique to reduce the full governing equations.The equations that arise from the analysis possess wave properties are solved in an initial-boundary value sense.The numerical study is performed by solving the parabolized Navier–Stokes equations for the DNS simulation and unsteady Reynolds-averaged Navier–Stokes equations along with the energy equation using the control volume approach based on a staggered grid system with the turbulence modelling.The v2-f turbulence model has been implemented.The results show that an unexpectedly large amplitude of unsteady vorticity is generated at the injection side-wall of the chamber and is then penetrated downstream by the bulk motion of the internal flow.These stresses may cause a scouring effect and large transient heat transfer on the combustion surface.A comparison between the analytical,computational,and experimental results is performed.展开更多
It is known that the performance potentials (or equivalentiy, perturbation realization factors) can be used as building blocks for performance sensitivities of Markov systems. In parameterized systems, the changes in ...It is known that the performance potentials (or equivalentiy, perturbation realization factors) can be used as building blocks for performance sensitivities of Markov systems. In parameterized systems, the changes in parameters may only affect some states, and the explicit transition probability matrix may not be known. In this paper, we use an example to show that we can use potentials to construct performance sensitivities in a more flexible way; only the potentials at the affected states need to be estimated, and the transition probability matrix need not be known. Policy iteration algorithms, which are simpler than the standard one, can be established.展开更多
A perturbation analysis for the impact torsional buckling of imperfective elastic cylindrical shells subjected to a step torque is given The imperfection is supposed to be small and has arbitrary form. It is shown tha...A perturbation analysis for the impact torsional buckling of imperfective elastic cylindrical shells subjected to a step torque is given The imperfection is supposed to be small and has arbitrary form. It is shown that only the imperfection which has the shape of static torsional buckling mode could influence the critical step torque. Finally a formula is presented for the critical step torque.展开更多
We provide an efficient simulation tool for performance evaluation in communication networks. Not only the general simulation functions-which can be found in some old simulation tools, but also the perturbation functi...We provide an efficient simulation tool for performance evaluation in communication networks. Not only the general simulation functions-which can be found in some old simulation tools, but also the perturbation function module via the Standard Clock (SC) approach-in which more than 2 perturbation simulation event paths can be constructed parallelly based on a single nominal simulation event path is included in this simulation software platform.展开更多
Given two Banach spaces E, F, let B(E, F) be the set of all bounded linear operators from E into F, ∑r the set of all operators of finite rank r in B(E, F), and ∑r^# the number of path connected components of ∑...Given two Banach spaces E, F, let B(E, F) be the set of all bounded linear operators from E into F, ∑r the set of all operators of finite rank r in B(E, F), and ∑r^# the number of path connected components of ∑r. It is known that ∑r is a smooth Banach submanifold in B(E,F) with given expression of its tangent space at each A ∈ ∑r. In this paper, the equality ∑r^# = 1 is proved. Consequently, the following theorem is obtained: for any nonnegative integer r,∑r is a smooth and path connected Banach submanifold in B(E, F) with the tangent space TA∑r = {B E B(E,F) : BN(A) belong to R(A)} at each A ∈ ∑r if dim F = ∞. Note that the routine method can hardly be applied here. So in addition to the nice topological and geometric property of ∑r the method presented in this paper is also interesting. As an application of this result, it is proved that if E = R^n and F = R^m, then ∑r is a smooth and path connected submanifold of B(R^n,R^m) and its dimension is dim ∑r = (m + n)r- r^2 for each r, 0≤r 〈 min{n,m}.展开更多
文摘A class of matrix inverse problems minimizing ‖A-‖ F on the linear manifold l A={A∈R n×m |‖AX-B‖ F=min} is considered. The perturbation analysis of the solution to these problems is carried out. The perturbation upper bounds of the solution are given for both the consistent and inconsistent cases. The obtained preturbation upper bounds are with respect to the distance from the perturbed solution to the unperturbed manifold.
基金Project supported by the National Key Basic Pre-Research Fund of the Ministry of Science and Technology of Chinathe Fund for Outstanding Young Researchers of the National Natural Sciences Foundation of China (No.10025208)+2 种基金 the KeyFund of the National Natural Science Foundation of China the Youth Fund of the National Natural Science Foundationof China (No.10302009) and the Youth Fund of Lanzhou University (Lzu200305).
文摘The magneto-plastic instability of a ferromagnetic beam-type plate with simple supports and small initial imperfection is analytically investigated in this paper for that the plastic deformation of the plate with a linear-strain hardening relation is considered when the plate is located in a strong uniformly distributed magnetic ?eld. After the distribution of magnetic ?elds related to the de?ected con?guration of plate is imaginably divided into two parts, i.e., one is related to the ?at plate and the other dependent on the perturbation of magnetic ?elds for which the plate con?guration changes from the ?at into the deformed state, the perturbation technique is employed to analyze the distribution of the perturbation magnetic ?elds in and out-of the magnetic medium of the ferromagnetic structure in a transverse magnetic ?eld, which leads to some analytical formulae/solutions for the magnetic ?elds and the resulting magnetic force exerted on the plate. Based on them, the magneto-plastic buckling and snapping of the plate in a transverse magnetic ?eld is discussed, and the critical magnetic ?eld is analytically formulated in terms of the parameters of geometry and material of the plate employed by solving the governing equation of the magneto-plastic plate in the applied magnetic ?eld. Further, the sensitivity of the initial imperfection on the magneto-plastic instability, expressed by an ampli?cation function, is obtained by solving the dynamic equation of de?ection of the plate after the inertial force in the transverse direction is taken into account. The results obtained show that the critical magnetic ?eld is sensitive to the plastic characteristic, e.g., hardening coe?cient, and the instability mode and de?ection of the plate are dependent on the geometrical imperfection as well.
文摘Compact accelerator-based neutron source facilities are garnering attention and play an important and expanding role in material and engineering sciences,as well as in neutron science education and training.Neutrons are produced by bombarding a low-energy proton beam onto a beryllium or lithium target.In such an acceleratorbased neutron source,a radio frequency quadrupole(RFQ)is usually utilized to accelerate a high-intensity proton beam to a few MeV.This study mainly covers the highfrequency structure design optimizations of a 4-vane RFQ with pi-mode stabilizer loops(PISLs)and its RF stability analysis.A 176 MHz RFQ accelerator is designed to operate at a 10%duty factor and could accelerate an80 mA proton beam from 65 keV to 2.5 MeV within a length of 5.3 m.The adoption of PISLs ensures high RF stability,eases the operation of the accelerator,and implies less stringent alignment and machining tolerances.
基金supported by the National Natural Science Foundation of China under grant number 11801534.
文摘This paper establishes some perturbation analysis for the tensor inverse,the tensor Moore-Penrose inverse,and the tensor system based on the t-product.In the settings of structured perturbations,we generalize the Sherman-Morrison-Woodbury(SMW)formula to the t-product tensor scenarios.The SMW formula can be used to perform the sensitivity analy-sis for a multilinear system of equations.
文摘In this study,an iterative algorithm is proposed to solve the nonlinear matrix equation X+A∗eXA=In.Explicit expressions for mixed and componentwise condition numbers with their upper bounds are derived to measure the sensitivity of the considered nonlinear matrix equation.Comparative analysis for the derived condition numbers and the proposed algorithm are presented.The proposed iterative algorithm reduces the number of iterations significantly when incorporated with exact line searches.Componentwise condition number seems more reliable to detect the sensitivity of the considered equation than mixed condition number as validated by numerical examples.
文摘In this paper, applying perturbation method to von Karman-type nonlinear large deflection equations of orthotropic plates by taking deflection as perturbation parameter, the postbuckling behavior of simply supported rectangular orthotropic plates under in-plane compression is investigated. Two types of in-plane boundary conditions are now considered and the effects of initial imperfections are also studied. Numerical results are presented for various cases of orthotropic composite plates having different elastic properties. It is found that the results obtained are in good agreement with those of experiments.
基金Supported by the National Natural Science Foundation of China(12001142).
文摘Let X be a Banach space and let P:X→X be a bounded linear operator.Using an algebraic inequality on the spectrum of P,we give a new sufficient condition that guarantees the existence of(I-P)^(-1) as a bounded linear operator on X,and a bound on its spectral radius is also obtained.This generalizes the classic Banach lemma.We apply the result to the perturbation analysis of general bounded linear operators on X with commutative perturbations.
基金Supported by the Nature Science Foundation of China(11471091 and 11401143)
文摘In this paper, we investigate a new perturbation theorem for the Moore-Penrose metric generalized inverses of a bounded linear operator in Banach space. The main tool in this paper is "the generalized Neumann lemma" which is quite different from the method in [12] where "the generalized Banach lemma" was used. By the method of the perturba- tion analysis of bounded linear operators, we obtain an explicit perturbation theorem and three inequalities about error estimates for the Moore-Penrose metric generalized inverse of bounded linear operator under the generalized Neumann lemma and the concept of stable perturbations in Banach spaces.
基金financially supported by the National Natural Science Foundation of China (Grant Nos. U1706230 and51379071)the Key Project of NSFC-Shandong Joint Research Funding POW3C (Grant No. U1906230)the National Science Fund for Distinguished Young Scholars (Grant No. 51425901)
文摘For surface gravity waves propagating over a horizontal bottom that consists of a patch of sinusoidal ripples,strong wave reflection occurs under the Bragg resonance condition.The critical wave frequency,at which the peak reflection coefficient is obtained,has been observed in both physical experiments and direct numerical simulations to be downshifted from the well-known theoretical prediction.It has long been speculated that the downshift may be attributed to higher-order rippled bottom and free-surface boundary effects,but the intrinsic mechanism remains unclear.By a regular perturbation analysis,we derive the theoretical solution of frequency downshift due to third-order nonlinear effects of both bottom and free-surface boundaries.It is found that the bottom nonlinearity plays the dominant role in frequency downshift while the free-surface nonlinearity actually causes frequency upshift.The frequency downshift/upshift has a quadratic dependence in the bottom/free-surface steepness.Polychromatic bottom leads to a larger frequency downshift relative to the monochromatic bottom.In addition,direct numerical simulations based on the high-order spectral method are conducted to validate the present theory.The theoretical solution of frequency downshift compares well with the numerical simulations and available experimental data.
基金Project supported by the National Natural Science Foundation of China (No. 10871225)the Pujiang Talent Program of China (No. 06PJ14416)
文摘The dissipative equilibrium dynamics studies the law of fluid motion under constraints in the contact interface of the coupling system. It needs to examine how con- straints act upon the fluid movement, while the fluid movement reacts to the constraint field. It also needs to examine the coupling fluid field and media within the contact in- terface, and to use the multi-scale analysis to solve the regular and singular perturbation problems in micro-phenomena of laboratories and macro-phenomena of nature. This pa- per describes the field affected by the gravity constraints. Applying the multi-scale anal- ysis to the complex Fourier harmonic analysis, scale changes, and the introduction of new parameters, the complex three-dimensional coupling dynamic equations are transformed into a boundary layer problem in the one-dimensional complex space. Asymptotic analy- sis is carried out for inter and outer solutions to the perturbation characteristic function of the boundary layer equations in multi-field coupling. Examples are given for disturbance analysis in the flow field, showing the turning point from the index oscillation solution to the algebraic solution. With further analysis and calculation on nonlinear eigenfunctions of the contact interface dynamic problems by the eigenvalue relation, an asymptotic per- turbation solution is obtained. Finally, a boundary layer solution to multi-field coupling problems in the contact interface is obtained by asymptotic estimates of eigenvalues for the G-N mode in the large flow limit. Characteristic parameters in the final form of the eigenvalue relation are key factors of the dissipative dynamics in the contact interface.
文摘The generalized adjoint property and adjoint matching condition for systems that contain discontinuous on/off switches are derived by a perturbation analysis of the Lagranging-form costfunction.
基金financially supported by the Council of Scientific and Industrial Research(CSIR),Govt.of India
文摘The present study analyzes the reflection and transmission phenomenon of water-waves in a two-layer ice-covered system. The upper layer is covered by an ice-sheet, whereas the bottom of the lower layer is undulated and permeable. By using regular perturbation analysis and Fourier transform technique, the problem is solved and the first order reflection and transmission coefficients are determined. It is found that these coefficients depend on the shape as well as the permeability of the undulating bottom. Therefore, from the practical viewpoint, an undulating bottom topography is considered to determine all the aforesaid coefficients. The role of various system parameters, such as porosity, angle of incidence and ice parameters, are discussed to analyze the transformation of incident water wave energy from one layer to another layer. The outcomes are demonstrated in graphical forms.
基金Supported by the Natural Science Foundation of Fujian Province.
文摘1 INTRODUCTIONThe concentration distribution of reactant in porouscatalyst pellet not only is the basis of calculating theeffectiveness factor,but also has a great significancein investigating the reaction and mass transfer in thecatalyst pellet.In principle,the concentration distri-bution and the effectiveness factor of a catalyst pelletcan be obtained by solving the reaction-diffusion equation.However,most of the differential equations haveno analytical solution except for some simple cases.The previous investigators have made great efforts to calculate the effectiveness factors of catalysts.They first obtained asymptotic solutions of effective-ness factor in the cases of the Thiele modulus φ→Oand φ→oo by means of perturbation method,thensynthesized the information of the asymptotic solu-
基金Project supported by the National Natural Science Foundation of China(Nos.11902165 and 11772162)the Natural Science Foundation of Inner Mongolia Autonomous Region of China(No.2019BS01004)the Inner Mongolia Grassland Talent of China(No.12000-12102408)。
文摘Curved channels are ubiquitous in microfluidic systems.The pressure-driven electrokinetic flow and energy conversion in a curved microtube are investigated analytically by using a perturbation analysis method under the assumptions of the small curvature ratio and the Reynolds number.The results indicate that the curvature of the microtube leads to a skewed pattern in the distribution of the electrical double layer(EDL)potential.The EDL potential at the outer side of the bend is larger than that at the inner side of the bend.The curvature shows an inhibitory effect on the magnitude of the streaming potential field induced by the pressure-driven flow.Since the spanwise pressure gradient is dominant over the inertial force,the resulting axial velocity profile is skewed into the inner region of the curved channel.Furthermore,the flow rate in a curved microtube could be larger than that in a straight one with the same pressure gradient and shape of cross section.The asymptotic solutions of the axial velocity and flow rate in the absence of the electrokinetic effect are in agreement with the classical results for low Reynolds number flows.Remarkably,the curved geometry could be beneficial to improving the electrokinetic energy conversion(EKEC)efficiency.
基金This research was funded by the Deanship of Scientific Research(DSR),King Abdulaziz University,Jeddah,Kingdom of Saudi Arabia,Grant No.829-722-D1435.
文摘In this paper,analytical,computational,and experimental studies are integrated to examine unsteady acoustic/vorticity transport phenomena in a solid rocket motor chamber with end-wall disturbance and side-wall injection.Acoustic-fluid dynamic interactions across the chamber may generate intense unsteady vorticity with associated shear stresses.These stresses may cause scouring and,in turn,enhance the heat rate and erosional burning of solid propellant in a real rocket chamber.In this modelling,the unsteady propellant gasification is mimicked by steady-state flow disturbed by end-wall oscillations.The analytical approach is formulated using an asymptotic technique to reduce the full governing equations.The equations that arise from the analysis possess wave properties are solved in an initial-boundary value sense.The numerical study is performed by solving the parabolized Navier–Stokes equations for the DNS simulation and unsteady Reynolds-averaged Navier–Stokes equations along with the energy equation using the control volume approach based on a staggered grid system with the turbulence modelling.The v2-f turbulence model has been implemented.The results show that an unexpectedly large amplitude of unsteady vorticity is generated at the injection side-wall of the chamber and is then penetrated downstream by the bulk motion of the internal flow.These stresses may cause a scouring effect and large transient heat transfer on the combustion surface.A comparison between the analytical,computational,and experimental results is performed.
文摘It is known that the performance potentials (or equivalentiy, perturbation realization factors) can be used as building blocks for performance sensitivities of Markov systems. In parameterized systems, the changes in parameters may only affect some states, and the explicit transition probability matrix may not be known. In this paper, we use an example to show that we can use potentials to construct performance sensitivities in a more flexible way; only the potentials at the affected states need to be estimated, and the transition probability matrix need not be known. Policy iteration algorithms, which are simpler than the standard one, can be established.
文摘A perturbation analysis for the impact torsional buckling of imperfective elastic cylindrical shells subjected to a step torque is given The imperfection is supposed to be small and has arbitrary form. It is shown that only the imperfection which has the shape of static torsional buckling mode could influence the critical step torque. Finally a formula is presented for the critical step torque.
文摘We provide an efficient simulation tool for performance evaluation in communication networks. Not only the general simulation functions-which can be found in some old simulation tools, but also the perturbation function module via the Standard Clock (SC) approach-in which more than 2 perturbation simulation event paths can be constructed parallelly based on a single nominal simulation event path is included in this simulation software platform.
基金Supported by the National Science Foundation of China (Grant No.10671049 and 10771101).
文摘Given two Banach spaces E, F, let B(E, F) be the set of all bounded linear operators from E into F, ∑r the set of all operators of finite rank r in B(E, F), and ∑r^# the number of path connected components of ∑r. It is known that ∑r is a smooth Banach submanifold in B(E,F) with given expression of its tangent space at each A ∈ ∑r. In this paper, the equality ∑r^# = 1 is proved. Consequently, the following theorem is obtained: for any nonnegative integer r,∑r is a smooth and path connected Banach submanifold in B(E, F) with the tangent space TA∑r = {B E B(E,F) : BN(A) belong to R(A)} at each A ∈ ∑r if dim F = ∞. Note that the routine method can hardly be applied here. So in addition to the nice topological and geometric property of ∑r the method presented in this paper is also interesting. As an application of this result, it is proved that if E = R^n and F = R^m, then ∑r is a smooth and path connected submanifold of B(R^n,R^m) and its dimension is dim ∑r = (m + n)r- r^2 for each r, 0≤r 〈 min{n,m}.