In this paper, in the light of the Boltzmann superpositionprinciple in linear viscoelastic- ity, a mathematical model ofperturbed motion on viscoelastic thin place is established. Thecorre- sponding variational princi...In this paper, in the light of the Boltzmann superpositionprinciple in linear viscoelastic- ity, a mathematical model ofperturbed motion on viscoelastic thin place is established. Thecorre- sponding variational principle is obtained in a convolutionbilinear form. For application the problems of free vibration, forcedvibration and stability of a viscoelastic simply-supportedrectangular thin plate are considered. The results show thatnumerical solutions agree well with analytical solutions.展开更多
Singular limit is investigated for reaction-diffusion equations with an additive noise in a bounded domain of R^2. The solution converges to one of the two stable phases {+1, -1} determined from the reaction term; acc...Singular limit is investigated for reaction-diffusion equations with an additive noise in a bounded domain of R^2. The solution converges to one of the two stable phases {+1, -1} determined from the reaction term; accordingly a phase separation curve is generated in the limit. We shall derive a randomly perturbed motion by curvature for the dynamics of the phase separation curve.展开更多
基金the National Natural Science Foundation of China (No.19772027)the Shanghai Municipal Development Foundation of Science and Technology(No.98JC14032)
文摘In this paper, in the light of the Boltzmann superpositionprinciple in linear viscoelastic- ity, a mathematical model ofperturbed motion on viscoelastic thin place is established. Thecorre- sponding variational principle is obtained in a convolutionbilinear form. For application the problems of free vibration, forcedvibration and stability of a viscoelastic simply-supportedrectangular thin plate are considered. The results show thatnumerical solutions agree well with analytical solutions.
文摘Singular limit is investigated for reaction-diffusion equations with an additive noise in a bounded domain of R^2. The solution converges to one of the two stable phases {+1, -1} determined from the reaction term; accordingly a phase separation curve is generated in the limit. We shall derive a randomly perturbed motion by curvature for the dynamics of the phase separation curve.